Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
2
2020-092
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
2020 - 092
2020-092
Commits
720c6e7b
Commit
720c6e7b
authored
Oct 17, 2020
by
Haritha Chanuka
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Replace IT17106702.py
parent
f8cec5dc
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
28 additions
and
54 deletions
+28
-54
IT17106702.py
IT17106702.py
+28
-54
No files found.
IT17106702.py
View file @
720c6e7b
...
...
@@ -2,42 +2,50 @@
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
pandas
as
pd
from
sklearn.impute
import
SimpleImputer
# Importing the dataset
dataset
=
pd
.
read_csv
(
'packet_data.csv
'
)
X
=
dataset
.
iloc
[:,
:
-
1
]
.
values
dataset
=
pd
.
read_csv
(
"/Users/harithachanuka/Documents/SLIIT/Research/Harry/Wanheda_Server/MobileBotNet/packet_data.csv"
,
encoding
=
'latin-1
'
)
X
=
dataset
.
iloc
[:,
[
1
,
3
]]
.
values
y
=
dataset
.
iloc
[:,
5
]
.
values
#Encoding categorical data
# datasetnew = pd.read_csv("/Users/harithachanuka/Documents/SLIIT/Research/Implementation/new.csv", encoding='latin-1')
# Xnw = datasetnew.iloc[:, :5].values
#Encoding categorical data-ForX
from
sklearn.preprocessing
import
LabelEncoder
,
OneHotEncoder
from
sklearn.compose
import
ColumnTransformer
labelencoder_X_T
=
LabelEncoder
()
X
[:,
0
]
=
labelencoder_X_T
.
fit_transform
(
X
[:,
0
])
labelencoder_X_S
=
LabelEncoder
()
X
[:,
1
]
=
labelencoder_X_S
.
fit_transform
(
X
[:,
1
])
labelencoder_X_D
=
LabelEncoder
()
X
[:,
2
]
=
labelencoder_X_D
.
fit_transform
(
X
[:,
2
])
X
[:,
0
]
=
labelencoder_X_S
.
fit_transform
(
X
[:,
0
])
#
labelencoder_X_D = LabelEncoder()
#
X[:, 2] = labelencoder_X_D.fit_transform(X[:, 2])
labelencoder_X_P
=
LabelEncoder
()
X
[:,
3
]
=
labelencoder_X_P
.
fit_transform
(
X
[:,
3
])
ct
=
ColumnTransformer
([(
"Source"
,
OneHotEncoder
(),
[
1
])],
remainder
=
'passthrough'
)
X
=
ct
.
fit_transform
(
X
)
.
toarray
()
ct2
=
ColumnTransformer
([(
"Destination"
,
OneHotEncoder
(),
[
72
])],
remainder
=
'passthrough'
)
X
=
ct2
.
fit_transform
(
X
)
ct3
=
ColumnTransformer
([(
"Protocol"
,
OneHotEncoder
(),
[
118
])],
remainder
=
'passthrough'
)
X
=
ct3
.
fit_transform
(
X
)
X
[:,
1
]
=
labelencoder_X_P
.
fit_transform
(
X
[:,
1
])
# ct = ColumnTransformer([("Source", OneHotEncoder(), [1])], remainder =
'passthrough')
#
X = ct.fit_transform(X).toarray()
# ct2 = ColumnTransformer([("Destination", OneHotEncoder(), [72])], remainder =
'passthrough')
#
X = ct2.fit_transform(X)
# ct3 = ColumnTransformer([("Protocol", OneHotEncoder(), [118])], remainder =
'passthrough')
#
X = ct3.fit_transform(X)
labelencoder_y
=
LabelEncoder
()
y
=
labelencoder_y
.
fit_transform
(
y
)
#
Splitting the data set into the training set and t
est set
#
Splitting the dataset into the Training set and T
est set
from
sklearn.model_selection
import
train_test_split
X_train
,
X_test
,
y_train
,
y_test
=
train_test_split
(
X
,
y
,
test_size
=
0.25
,
random_state
=
0
)
# print(X_train)
# print(X_test)
# print(y_train)
# print(X_train)
#
Feature s
caling
#
Feature S
caling
from
sklearn.preprocessing
import
StandardScaler
sc_X
=
StandardScaler
()
X_train
=
sc_X
.
fit_transform
(
X_train
)
X_test
=
sc_X
.
fit_
transform
(
X_test
)
X_test
=
sc_X
.
transform
(
X_test
)
# Fitting classifier to the Training set
from
sklearn.naive_bayes
import
GaussianNB
...
...
@@ -47,42 +55,8 @@ classifier.fit(X_train, y_train)
# Predicting the Test set results
y_pred
=
classifier
.
predict
(
X_test
)
# Making the Confusion Matrix
from
sklearn.metrics
import
confusion_matrix
cm
=
confusion_matrix
(
y_test
,
y_pred
)
# Visualising the Training set results
from
matplotlib.colors
import
ListedColormap
X_set
,
y_set
=
X_train
,
y_train
X1
,
X2
=
np
.
meshgrid
(
np
.
arange
(
start
=
X_set
[:,
0
]
.
min
()
-
1
,
stop
=
X_set
[:,
0
]
.
max
()
+
1
,
step
=
0.01
),
np
.
arange
(
start
=
X_set
[:,
1
]
.
min
()
-
1
,
stop
=
X_set
[:,
1
]
.
max
()
+
1
,
step
=
0.01
))
plt
.
contourf
(
X1
,
X2
,
classifier
.
predict
(
np
.
array
([
X1
.
ravel
(),
X2
.
ravel
()])
.
T
)
.
reshape
(
X1
.
shape
),
alpha
=
0.75
,
cmap
=
ListedColormap
((
'red'
,
'green'
)))
plt
.
xlim
(
X1
.
min
(),
X1
.
max
())
plt
.
ylim
(
X2
.
min
(),
X2
.
max
())
for
i
,
j
in
enumerate
(
np
.
unique
(
y_set
)):
plt
.
scatter
(
X_set
[
y_set
==
j
,
0
],
X_set
[
y_set
==
j
,
1
],
c
=
ListedColormap
((
'red'
,
'green'
))(
i
),
label
=
j
)
plt
.
title
(
'BotNet (Training set)'
)
plt
.
xlabel
(
'Time Source Dest & Protocol'
)
plt
.
ylabel
(
'Malicious Or Not'
)
plt
.
legend
()
plt
.
show
()
# Visualising the Test set results
from
matplotlib.colors
import
ListedColormap
X_set
,
y_set
=
X_test
,
y_test
X1
,
X2
=
np
.
meshgrid
(
np
.
arange
(
start
=
X_set
[:,
0
]
.
min
()
-
1
,
stop
=
X_set
[:,
0
]
.
max
()
+
1
,
step
=
0.01
),
np
.
arange
(
start
=
X_set
[:,
1
]
.
min
()
-
1
,
stop
=
X_set
[:,
1
]
.
max
()
+
1
,
step
=
0.01
))
plt
.
contourf
(
X1
,
X2
,
classifier
.
predict
(
np
.
array
([
X1
.
ravel
(),
X2
.
ravel
()])
.
T
)
.
reshape
(
X1
.
shape
),
alpha
=
0.75
,
cmap
=
ListedColormap
((
'red'
,
'green'
)))
plt
.
xlim
(
X1
.
min
(),
X1
.
max
())
plt
.
ylim
(
X2
.
min
(),
X2
.
max
())
for
i
,
j
in
enumerate
(
np
.
unique
(
y_set
)):
plt
.
scatter
(
X_set
[
y_set
==
j
,
0
],
X_set
[
y_set
==
j
,
1
],
c
=
ListedColormap
((
'red'
,
'green'
))(
i
),
label
=
j
)
plt
.
title
(
'Naive Bayes (Test set)'
)
plt
.
xlabel
(
'Age'
)
plt
.
ylabel
(
'Estimated Salary'
)
plt
.
legend
()
plt
.
show
()
#
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment