Commit 9a6723f2 authored by Ashen Udayanga Sudugala's avatar Ashen Udayanga Sudugala

Merge branch 'Navindu' into 'master'

Navindu

See merge request !8
parents 65c8b393 20de777f
...@@ -31,7 +31,7 @@ from sklearn.metrics import classification_report ...@@ -31,7 +31,7 @@ from sklearn.metrics import classification_report
import seaborn as sns import seaborn as sns
# Importing the dataset # Importing the dataset
dataset = pd.read_csv('/Users/harithachanuka/Documents/SLIIT/Research/Harry/Wanheda_Server/Slowloris/SlowlorisDATASET.numbers') dataset = pd.read_csv('SlowlorisDATASET.csv')
# Read in data and display first 5 rows # Read in data and display first 5 rows
dataset.head() dataset.head()
......
# -*- coding: utf-8 -*-
"""
Created on Sat May 16 17:40:32 2020
@author: navin
"""
# Simple Linear Regression
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('dataset_7.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 84].values
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 1/3, random_state = 0)
# Training the Simple Linear Regression model on the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
# Predicting the Test set results
y_pred = regressor.predict(X_test)
# Visualising the Training set results
plt.scatter(X_train, y_train, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('Slowloris Attack Testing')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
# Visualising the Test set results
plt.scatter(X_test, y_test, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('Slowloris Attack Testing')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment