Commit bacedd96 authored by Ashen Udayanga Sudugala's avatar Ashen Udayanga Sudugala

Merge branch 'Navindu' into 'master'

Navindu

See merge request !7
parents a3d1ac21 a4192197
This source diff could not be displayed because it is too large. You can view the blob instead.
# -*- coding: utf-8 -*-
"""Navindu.ipynb"""
# Importing the libraries
# Fundamental package for scientific computing
import numpy as np
# Plotting library
import matplotlib.pyplot as plt
# Data manipulation and analysis library
import pandas as pd
# Completing missing values
from sklearn.impute import SimpleImputer
# Encode target labels with value between 0 and n_classes-1
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
# Applies transformers to columns of an array or pandas DataFrame
from sklearn.compose import ColumnTransformer
# Split arrays or matrices into random train and test subsets
from sklearn.model_selection import train_test_split
# Standardize features by removing the mean and scaling to unit variance
from sklearn.preprocessing import StandardScaler
# Logistic Regression classifier
from sklearn.linear_model import LogisticRegression
# Compute confusion matrix to evaluate the accuracy of a classification
from sklearn.metrics import confusion_matrix
# Accuracy classification score
from sklearn.metrics import accuracy_score
# Build a text report showing the main classification metrics
from sklearn.metrics import classification_report
# Data visualization library based on matplotlib
import seaborn as sns
# Importing the dataset
dataset = pd.read_csv('/Users/harithachanuka/Documents/SLIIT/Research/Harry/Wanheda_Server/Slowloris/SlowlorisDATASET.numbers')
# Read in data and display first 5 rows
dataset.head()
# Drop the dataset
dataset = dataset.dropna()
#Data cleaning
dataset.isnull().sum()
#Encoding categarical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_Y = LabelEncoder()
dataset.iloc[:, 78] = labelencoder_Y.fit_transform(dataset.iloc[:, 78])
dataset.shape
dataset = dataset[~dataset.isin([np.isnan]).any(1)].astype(np.float64)
dataset = dataset[~dataset.isin([np.isinf]).any(1)].astype(np.float64)
dataset = dataset.mask(np.isinf(dataset))
dataset = dataset.dropna()
dataset.shape
#returns a boolean array of the X
np.any(np.isinf(dataset))
#detect numpy arrays of different data types
np.any(np.isnan(dataset))
#get all colomns without last colomn in X axis and get last colomn in y axis
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 78].values
dataset.info()
y
df = pd.DataFrame(data=X)
df
#Spliting the dataset into the training set and test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
#feature scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
y_train.shape
#fitting simple linear regression to the training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
#predecting the data
y_pred = regressor.predict(X_test)
print(y_pred)
X_train.shape
y_train.shape
#visual plot
plt.scatter(X_train, y_train, color = 'red')
plt.plot(X_train, y_train, color = 'red')
plt.plot(X_test, y_pred, color = 'blue')
plt.title('Slowloris Attack')
plt.xlabel('Flow Duration')
plt.ylabel('Total Length')
plt.show()
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on Sat May 16 17:40:32 2020
@author: navin
"""
# Simple Linear Regression
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('dataset_7.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 84].values
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 1/3, random_state = 0)
# Training the Simple Linear Regression model on the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
# Predicting the Test set results
y_pred = regressor.predict(X_test)
# Visualising the Training set results
plt.scatter(X_train, y_train, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('Slowloris Attack Testing')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
# Visualising the Test set results
plt.scatter(X_test, y_test, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('Slowloris Attack Testing')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment