Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
2
2020-092
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
2020 - 092
2020-092
Commits
df0351a7
Commit
df0351a7
authored
Oct 18, 2020
by
Haritha Chanuka
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload mobile botnet trained model File
parent
d26ff57e
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
43 additions
and
0 deletions
+43
-0
WANHEDA Server/MobileBotNet/mobileBotNetModel.py
WANHEDA Server/MobileBotNet/mobileBotNetModel.py
+43
-0
No files found.
WANHEDA Server/MobileBotNet/mobileBotNetModel.py
0 → 100644
View file @
df0351a7
# Importing the libraries
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
pandas
as
pd
from
sklearn.impute
import
SimpleImputer
# Importing the dataset
dataset
=
pd
.
read_csv
(
"/Users/harithachanuka/Documents/SLIIT/Research/Harry/Wanheda_Server/MobileBotNet/packet_data.csv"
,
encoding
=
'latin-1'
)
X
=
dataset
.
iloc
[:,
[
1
,
3
]]
.
values
y
=
dataset
.
iloc
[:,
5
]
.
values
# Encoding categorical data-ForX
from
sklearn.preprocessing
import
LabelEncoder
,
OneHotEncoder
labelencoder_X_S
=
LabelEncoder
()
X
[:,
0
]
=
labelencoder_X_S
.
fit_transform
(
X
[:,
0
])
labelencoder_X_P
=
LabelEncoder
()
X
[:,
1
]
=
labelencoder_X_P
.
fit_transform
(
X
[:,
1
])
labelencoder_y
=
LabelEncoder
()
y
=
labelencoder_y
.
fit_transform
(
y
)
# Splitting the dataset into the Training set and Test set
from
sklearn.model_selection
import
train_test_split
X_train
,
X_test
,
y_train
,
y_test
=
train_test_split
(
X
,
y
,
test_size
=
0.25
,
random_state
=
0
)
# Feature Scaling
from
sklearn.preprocessing
import
StandardScaler
sc_X
=
StandardScaler
()
X_train
=
sc_X
.
fit_transform
(
X_train
)
X_test
=
sc_X
.
transform
(
X_test
)
# Fitting classifier to the Training set
from
sklearn.naive_bayes
import
GaussianNB
classifier
=
GaussianNB
()
classifier
.
fit
(
X_train
,
y_train
)
# Predicting the Test set results
y_pred
=
classifier
.
predict
(
X_test
)
# Create confusion metrics to check the performance of algorithm
from
sklearn.metrics
import
confusion_matrix
cm
=
confusion_matrix
(
y_test
,
y_pred
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment