Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
CHILD INTELLIGENT ASSESSMENT TOOL
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
2020-046
CHILD INTELLIGENT ASSESSMENT TOOL
Commits
4873ed21
Commit
4873ed21
authored
Apr 06, 2020
by
Dasun Madushanka
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File- DMT 1 -testing train data
parent
62e3d729
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
77 additions
and
0 deletions
+77
-0
Untitled.py
Untitled.py
+77
-0
No files found.
Untitled.py
0 → 100644
View file @
4873ed21
#!/usr/bin/env python
# coding: utf-8
# In[13]:
import
tensorflow
as
tf
mnist
=
tf
.
keras
.
datasets
.
mnist
(
x_train
,
y_train
),
(
x_test
,
y_test
)
=
mnist
.
load_data
()
x_train
=
tf
.
keras
.
utils
.
normalize
(
x_train
,
axis
=
1
)
x_test
=
tf
.
keras
.
utils
.
normalize
(
x_test
,
axis
=
1
)
model
=
tf
.
keras
.
models
.
Sequential
()
model
.
add
(
tf
.
keras
.
layers
.
Flatten
())
model
.
add
(
tf
.
keras
.
layers
.
Dense
(
128
,
activation
=
tf
.
nn
.
relu
))
model
.
add
(
tf
.
keras
.
layers
.
Dense
(
128
,
activation
=
tf
.
nn
.
relu
))
model
.
add
(
tf
.
keras
.
layers
.
Dense
(
10
,
activation
=
tf
.
nn
.
softmax
))
model
.
compile
(
optimizer
=
'adam'
,
loss
=
'sparse_categorical_crossentropy'
,
metrics
=
[
'accuracy'
])
model
.
fit
(
x_train
,
y_train
,
epochs
=
3
)
# In[14]:
val_loss
,
val_acc
=
model
.
evaluate
(
x_test
,
y_test
)
print
(
val_loss
,
val_acc
)
#
# In[11]:
import
matplotlib.pyplot
as
plt
plt
.
imshow
(
x_train
[
0
],
cmap
=
plt
.
cm
.
binary
)
plt
.
show
()
print
(
x_train
[
0
])
# In[36]:
model
.
save
(
"num_reader.model"
)
# In[38]:
predictions
=
new_model
.
predict
([
x_test
])
print
(
predictions
)
# In[33]:
predictions
=
new_model
.
predict
([
x_test
])
# In[20]:
print
(
predictions
)
# In[ ]:
import
numpy
as
np
print
(
np
.
argmax
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment