Commit 4873ed21 authored by Dasun Madushanka's avatar Dasun Madushanka

Upload New File- DMT 1 -testing train data

parent 62e3d729
#!/usr/bin/env python
# coding: utf-8
# In[13]:
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = tf.keras.utils.normalize(x_train, axis=1)
x_test = tf.keras.utils.normalize(x_test, axis=1)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(10, activation=tf.nn.softmax))
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=3)
# In[14]:
val_loss, val_acc = model.evaluate(x_test, y_test)
print(val_loss,val_acc)
#
# In[11]:
import matplotlib.pyplot as plt
plt.imshow(x_train[0], cmap = plt.cm.binary)
plt.show()
print(x_train[0])
# In[36]:
model.save("num_reader.model")
# In[38]:
predictions = new_model.predict([x_test])
print(predictions)
# In[33]:
predictions = new_model.predict([x_test])
# In[20]:
print(predictions)
# In[ ]:
import numpy as np
print(np.argmax)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment