Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
2
2021-027
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
2021-27
2021-027
Commits
5d3a122d
Commit
5d3a122d
authored
Oct 24, 2021
by
Rifana F.N.F_IT16141902
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Data normalization.py
parent
e0bdbf8b
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
90 deletions
+0
-90
neural_network.py
neural_network.py
+0
-90
No files found.
neural_network.py
View file @
5d3a122d
...
...
@@ -9,36 +9,7 @@ from tensorflow.keras.layers.experimental import preprocessing
dataframe
=
pd
.
read_csv
(
'Database_Final.csv'
)
print
(
dataframe
.
head
())
dataframe
[
'target'
]
=
dataframe
[
'Remaining space'
]
dataframe
=
dataframe
.
drop
(
columns
=
[
'Unnamed: 0'
,
'Remaining space'
])
# dataframe.head()
train
,
test
=
train_test_split
(
dataframe
,
test_size
=
0.2
)
train
,
val
=
train_test_split
(
train
,
test_size
=
0.2
)
print
(
len
(
train
),
'train examples'
)
print
(
len
(
val
),
'validation examples'
)
print
(
len
(
test
),
'test examples'
)
def
df_to_dataset
(
dataframe
,
label_column
,
shuffle
=
True
,
batch_size
=
32
):
dataframe
=
dataframe
.
copy
()
labels
=
dataframe
.
pop
(
label_column
)
#labels = dataframe[label_column]
ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
dataframe
.
to_dict
(
orient
=
'list'
),
labels
))
if
shuffle
:
ds
=
ds
.
shuffle
(
buffer_size
=
len
(
dataframe
))
ds
=
ds
.
batch
(
batch_size
)
return
ds
batch_size
=
5
train_ds
=
df_to_dataset
(
train
,
'target'
,
batch_size
=
batch_size
)
[(
train_features
,
label_batch
)]
=
train_ds
.
take
(
1
)
print
(
'Every feature:'
,
list
(
train_features
.
keys
()))
print
(
'A batch of id:'
,
train_features
[
'ID'
])
print
(
'A batch of targets:'
,
label_batch
)
def
get_normalization_layer
(
name
,
dataset
):
# Create a Normalization layer for our feature.
...
...
@@ -52,64 +23,3 @@ def get_normalization_layer(name, dataset):
return
normalizer
def
get_category_encoding_layer
(
name
,
dataset
,
dtype
,
max_tokens
=
None
):
# Create a StringLookup layer which will turn strings into integer indices
if
dtype
==
'string'
:
index
=
preprocessing
.
StringLookup
(
max_tokens
=
max_tokens
)
else
:
index
=
preprocessing
.
IntegerLookup
(
max_tokens
=
max_tokens
)
# Prepare a Dataset that only yields our feature
feature_ds
=
dataset
.
map
(
lambda
x
,
y
:
x
[
name
])
# Learn the set of possible values and assign them a fixed integer index.
index
.
adapt
(
feature_ds
)
# Create a Discretization for our integer indices.
encoder
=
preprocessing
.
CategoryEncoding
(
num_tokens
=
index
.
vocabulary_size
())
# Apply one-hot encoding to our indices. The lambda function captures the
# layer so we can use them, or include them in the functional model later.
return
lambda
feature
:
encoder
(
index
(
feature
))
batch_size
=
256
train_ds
=
df_to_dataset
(
train
,
'target'
,
batch_size
=
batch_size
)
val_ds
=
df_to_dataset
(
val
,
'target'
,
shuffle
=
False
,
batch_size
=
batch_size
)
test_ds
=
df_to_dataset
(
test
,
'target'
,
shuffle
=
False
,
batch_size
=
batch_size
)
all_inputs
=
[]
encoded_features
=
[]
# Numeric features.
for
header
in
[
'Entry'
,
'Exit'
]:
numeric_col
=
tf
.
keras
.
Input
(
shape
=
(
1
,),
name
=
header
)
normalization_layer
=
get_normalization_layer
(
header
,
train_ds
)
encoded_numeric_col
=
normalization_layer
(
numeric_col
)
all_inputs
.
append
(
numeric_col
)
encoded_features
.
append
(
encoded_numeric_col
)
categorical_cols
=
[
'Date'
,
'Time'
,
'Weather'
,
'Parking'
]
for
header
in
categorical_cols
:
categorical_col
=
tf
.
keras
.
Input
(
shape
=
(
1
,),
name
=
header
,
dtype
=
'string'
)
encoding_layer
=
get_category_encoding_layer
(
header
,
train_ds
,
dtype
=
'string'
,
max_tokens
=
5
)
encoded_categorical_col
=
encoding_layer
(
categorical_col
)
all_inputs
.
append
(
categorical_col
)
encoded_features
.
append
(
encoded_categorical_col
)
all_features
=
tf
.
keras
.
layers
.
concatenate
(
encoded_features
)
x
=
tf
.
keras
.
layers
.
Dense
(
64
,
activation
=
"relu"
)(
all_features
)
x
=
tf
.
keras
.
layers
.
Dropout
(
0.5
)(
x
)
output
=
tf
.
keras
.
layers
.
Dense
(
1
)(
x
)
model
=
tf
.
keras
.
Model
(
all_inputs
,
output
)
model
.
compile
(
optimizer
=
'adam'
,
loss
=
tf
.
keras
.
losses
.
BinaryCrossentropy
(
from_logits
=
True
),
metrics
=
[
"accuracy"
])
# rankdir='LR' is used to make the graph horizontal.
# tf.keras.utils.plot_model(model, show_shapes=True, rankdir="LR")
model
.
fit
(
train_ds
,
epochs
=
1
,
validation_data
=
val_ds
)
loss
,
accuracy
=
model
.
evaluate
(
test_ds
)
print
(
"Accuracy"
,
accuracy
*
100
,
'
%
'
)
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment