Commit 4c0466d5 authored by kushan96's avatar kushan96

Implementation

parent a290e3c1
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np \n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\")\n",
"from sklearn.metrics import accuracy_score\n",
"from sklearn.metrics import confusion_matrix\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.svm import SVC\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn.ensemble import GradientBoostingClassifier\n",
"from sklearn.ensemble import AdaBoostClassifier\n",
"from sklearn.naive_bayes import GaussianNB\n",
"from sklearn.model_selection import GridSearchCV"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"#Importing the dataset\n",
"Data = pd.read_csv('depression_happiness.csv')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Feeling</th>\n",
" <th>Gender</th>\n",
" <th>Age</th>\n",
" <th>Relationship_Status</th>\n",
" <th>Happy_With_Financial_State</th>\n",
" <th>Succeeded_To_Cope_up_with_Environment</th>\n",
" <th>Understanding_Family</th>\n",
" <th>Feeling_Pressure</th>\n",
" <th>Satisfied_with_Job_or_Studies</th>\n",
" <th>Happy_with_Living_Place</th>\n",
" <th>Inferiority_Complex</th>\n",
" <th>Satisfied_with_Today_Meal</th>\n",
" <th>Feeling_Sick</th>\n",
" <th>Sleeping_Time</th>\n",
" <th>Output</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>90</td>\n",
" <td>Male</td>\n",
" <td>90</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>3</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Not applicable</td>\n",
" <td>Maybe</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>7.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>90</td>\n",
" <td>Female</td>\n",
" <td>90</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>3</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Not applicable</td>\n",
" <td>Maybe</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>7.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>85</td>\n",
" <td>Male</td>\n",
" <td>85</td>\n",
" <td>Single</td>\n",
" <td>No</td>\n",
" <td>2</td>\n",
" <td>Normal</td>\n",
" <td>Not applicable</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>5.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>85</td>\n",
" <td>Male</td>\n",
" <td>85</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>1</td>\n",
" <td>Good</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>Maybe</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>6.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>85</td>\n",
" <td>Male</td>\n",
" <td>85</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>2</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Maybe</td>\n",
" <td>Neutral</td>\n",
" <td>Yes</td>\n",
" <td>8.0</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>995</th>\n",
" <td>55</td>\n",
" <td>Female</td>\n",
" <td>15</td>\n",
" <td>Single</td>\n",
" <td>Yes</td>\n",
" <td>1</td>\n",
" <td>Good</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Maybe</td>\n",
" <td>Neutral</td>\n",
" <td>No</td>\n",
" <td>6.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>996</th>\n",
" <td>50</td>\n",
" <td>Female</td>\n",
" <td>15</td>\n",
" <td>Single</td>\n",
" <td>Yes</td>\n",
" <td>2</td>\n",
" <td>Good</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Maybe</td>\n",
" <td>Neutral</td>\n",
" <td>No</td>\n",
" <td>7.0</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>997</th>\n",
" <td>15</td>\n",
" <td>Female</td>\n",
" <td>15</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>1</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>6.0</td>\n",
" <td>High Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>998</th>\n",
" <td>15</td>\n",
" <td>Female</td>\n",
" <td>15</td>\n",
" <td>Single</td>\n",
" <td>No</td>\n",
" <td>1</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Maybe</td>\n",
" <td>Neutral</td>\n",
" <td>Yes</td>\n",
" <td>4.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>999</th>\n",
" <td>45</td>\n",
" <td>Male</td>\n",
" <td>14</td>\n",
" <td>Single</td>\n",
" <td>No</td>\n",
" <td>2</td>\n",
" <td>Good</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>6.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>1000 rows × 15 columns</p>\n",
"</div>"
],
"text/plain": [
" Feeling Gender Age Relationship_Status Happy_With_Financial_State \\\n",
"0 90 Male 90 In a relationship No \n",
"1 90 Female 90 In a relationship No \n",
"2 85 Male 85 Single No \n",
"3 85 Male 85 In a relationship No \n",
"4 85 Male 85 In a relationship No \n",
".. ... ... ... ... ... \n",
"995 55 Female 15 Single Yes \n",
"996 50 Female 15 Single Yes \n",
"997 15 Female 15 In a relationship No \n",
"998 15 Female 15 Single No \n",
"999 45 Male 14 Single No \n",
"\n",
" Succeeded_To_Cope_up_with_Environment Understanding_Family \\\n",
"0 3 Normal \n",
"1 3 Normal \n",
"2 2 Normal \n",
"3 1 Good \n",
"4 2 Normal \n",
".. ... ... \n",
"995 1 Good \n",
"996 2 Good \n",
"997 1 Normal \n",
"998 1 Normal \n",
"999 2 Good \n",
"\n",
" Feeling_Pressure Satisfied_with_Job_or_Studies Happy_with_Living_Place \\\n",
"0 Yes No Not applicable \n",
"1 Yes No Not applicable \n",
"2 Not applicable No Yes \n",
"3 Yes No No \n",
"4 Yes No Yes \n",
".. ... ... ... \n",
"995 Yes No Yes \n",
"996 Yes No Yes \n",
"997 Yes No No \n",
"998 Yes No Yes \n",
"999 No No Yes \n",
"\n",
" Inferiority_Complex Satisfied_with_Today_Meal Feeling_Sick Sleeping_Time \\\n",
"0 Maybe Yes No 7.5 \n",
"1 Maybe Yes No 7.5 \n",
"2 Yes Yes No 5.5 \n",
"3 Maybe No No 6.5 \n",
"4 Maybe Neutral Yes 8.0 \n",
".. ... ... ... ... \n",
"995 Maybe Neutral No 6.5 \n",
"996 Maybe Neutral No 7.0 \n",
"997 Yes Yes No 6.0 \n",
"998 Maybe Neutral Yes 4.5 \n",
"999 Yes Yes No 6.5 \n",
"\n",
" Output \n",
"0 Intermediate Risk \n",
"1 Intermediate Risk \n",
"2 Intermediate Risk \n",
"3 Intermediate Risk \n",
"4 Intermediate Risk \n",
".. ... \n",
"995 Intermediate Risk \n",
"996 Intermediate Risk \n",
"997 High Risk \n",
"998 Intermediate Risk \n",
"999 Intermediate Risk \n",
"\n",
"[1000 rows x 15 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Data"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(1000, 15)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Data.shape"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Feeling</th>\n",
" <th>Gender</th>\n",
" <th>Age</th>\n",
" <th>Relationship_Status</th>\n",
" <th>Happy_With_Financial_State</th>\n",
" <th>Succeeded_To_Cope_up_with_Environment</th>\n",
" <th>Understanding_Family</th>\n",
" <th>Feeling_Pressure</th>\n",
" <th>Satisfied_with_Job_or_Studies</th>\n",
" <th>Happy_with_Living_Place</th>\n",
" <th>Inferiority_Complex</th>\n",
" <th>Satisfied_with_Today_Meal</th>\n",
" <th>Feeling_Sick</th>\n",
" <th>Sleeping_Time</th>\n",
" <th>Output</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>90</td>\n",
" <td>Male</td>\n",
" <td>90</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>3</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Not applicable</td>\n",
" <td>Maybe</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>7.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>90</td>\n",
" <td>Female</td>\n",
" <td>90</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>3</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Not applicable</td>\n",
" <td>Maybe</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>7.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>85</td>\n",
" <td>Male</td>\n",
" <td>85</td>\n",
" <td>Single</td>\n",
" <td>No</td>\n",
" <td>2</td>\n",
" <td>Normal</td>\n",
" <td>Not applicable</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>5.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>85</td>\n",
" <td>Male</td>\n",
" <td>85</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>1</td>\n",
" <td>Good</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>Maybe</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>6.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>85</td>\n",
" <td>Male</td>\n",
" <td>85</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>2</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Maybe</td>\n",
" <td>Neutral</td>\n",
" <td>Yes</td>\n",
" <td>8.0</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Feeling Gender Age Relationship_Status Happy_With_Financial_State \\\n",
"0 90 Male 90 In a relationship No \n",
"1 90 Female 90 In a relationship No \n",
"2 85 Male 85 Single No \n",
"3 85 Male 85 In a relationship No \n",
"4 85 Male 85 In a relationship No \n",
"\n",
" Succeeded_To_Cope_up_with_Environment Understanding_Family \\\n",
"0 3 Normal \n",
"1 3 Normal \n",
"2 2 Normal \n",
"3 1 Good \n",
"4 2 Normal \n",
"\n",
" Feeling_Pressure Satisfied_with_Job_or_Studies Happy_with_Living_Place \\\n",
"0 Yes No Not applicable \n",
"1 Yes No Not applicable \n",
"2 Not applicable No Yes \n",
"3 Yes No No \n",
"4 Yes No Yes \n",
"\n",
" Inferiority_Complex Satisfied_with_Today_Meal Feeling_Sick Sleeping_Time \\\n",
"0 Maybe Yes No 7.5 \n",
"1 Maybe Yes No 7.5 \n",
"2 Yes Yes No 5.5 \n",
"3 Maybe No No 6.5 \n",
"4 Maybe Neutral Yes 8.0 \n",
"\n",
" Output \n",
"0 Intermediate Risk \n",
"1 Intermediate Risk \n",
"2 Intermediate Risk \n",
"3 Intermediate Risk \n",
"4 Intermediate Risk "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Data.head()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Finding the sum of duplicate records\n",
"Data.duplicated().sum()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Feeling</th>\n",
" <th>Gender</th>\n",
" <th>Age</th>\n",
" <th>Relationship_Status</th>\n",
" <th>Happy_With_Financial_State</th>\n",
" <th>Succeeded_To_Cope_up_with_Environment</th>\n",
" <th>Understanding_Family</th>\n",
" <th>Feeling_Pressure</th>\n",
" <th>Satisfied_with_Job_or_Studies</th>\n",
" <th>Happy_with_Living_Place</th>\n",
" <th>Inferiority_Complex</th>\n",
" <th>Satisfied_with_Today_Meal</th>\n",
" <th>Feeling_Sick</th>\n",
" <th>Sleeping_Time</th>\n",
" <th>Output</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>75</td>\n",
" <td>Male</td>\n",
" <td>75</td>\n",
" <td>Single</td>\n",
" <td>Yes</td>\n",
" <td>1</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Maybe</td>\n",
" <td>Neutral</td>\n",
" <td>No</td>\n",
" <td>6.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>40</th>\n",
" <td>75</td>\n",
" <td>Male</td>\n",
" <td>71</td>\n",
" <td>Single</td>\n",
" <td>Yes</td>\n",
" <td>2</td>\n",
" <td>Good</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>Neutral</td>\n",
" <td>No</td>\n",
" <td>6.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>298</th>\n",
" <td>50</td>\n",
" <td>Male</td>\n",
" <td>51</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>3</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Not applicable</td>\n",
" <td>Maybe</td>\n",
" <td>Neutral</td>\n",
" <td>Yes</td>\n",
" <td>6.0</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Feeling Gender Age Relationship_Status Happy_With_Financial_State \\\n",
"18 75 Male 75 Single Yes \n",
"40 75 Male 71 Single Yes \n",
"298 50 Male 51 In a relationship No \n",
"\n",
" Succeeded_To_Cope_up_with_Environment Understanding_Family \\\n",
"18 1 Normal \n",
"40 2 Good \n",
"298 3 Normal \n",
"\n",
" Feeling_Pressure Satisfied_with_Job_or_Studies Happy_with_Living_Place \\\n",
"18 Yes No Yes \n",
"40 Yes No Yes \n",
"298 Yes No Not applicable \n",
"\n",
" Inferiority_Complex Satisfied_with_Today_Meal Feeling_Sick Sleeping_Time \\\n",
"18 Maybe Neutral No 6.5 \n",
"40 Yes Neutral No 6.5 \n",
"298 Maybe Neutral Yes 6.0 \n",
"\n",
" Output \n",
"18 Intermediate Risk \n",
"40 Intermediate Risk \n",
"298 Intermediate Risk "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Data[Data.duplicated()]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"#Dropping the duplicate values \n",
"Data.drop_duplicates(inplace=True)\n",
"Data.reset_index(drop=True, inplace=True)\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(997, 15)"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Data.shape"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Feeling 0\n",
"Gender 0\n",
"Age 0\n",
"Relationship_Status 0\n",
"Happy_With_Financial_State 0\n",
"Succeeded_To_Cope_up_with_Environment 0\n",
"Understanding_Family 0\n",
"Feeling_Pressure 0\n",
"Satisfied_with_Job_or_Studies 0\n",
"Happy_with_Living_Place 0\n",
"Inferiority_Complex 0\n",
"Satisfied_with_Today_Meal 0\n",
"Feeling_Sick 0\n",
"Sleeping_Time 0\n",
"Output 0\n",
"dtype: int64"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Checking for null values\n",
"Data.isnull().sum()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"Data.reset_index(drop=True,inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Feeling</th>\n",
" <th>Gender</th>\n",
" <th>Age</th>\n",
" <th>Relationship_Status</th>\n",
" <th>Happy_With_Financial_State</th>\n",
" <th>Succeeded_To_Cope_up_with_Environment</th>\n",
" <th>Understanding_Family</th>\n",
" <th>Feeling_Pressure</th>\n",
" <th>Satisfied_with_Job_or_Studies</th>\n",
" <th>Happy_with_Living_Place</th>\n",
" <th>Inferiority_Complex</th>\n",
" <th>Satisfied_with_Today_Meal</th>\n",
" <th>Feeling_Sick</th>\n",
" <th>Sleeping_Time</th>\n",
" <th>Output</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>90</td>\n",
" <td>Male</td>\n",
" <td>90</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>3</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Not applicable</td>\n",
" <td>Maybe</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>7.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>90</td>\n",
" <td>Female</td>\n",
" <td>90</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>3</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Not applicable</td>\n",
" <td>Maybe</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>7.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>85</td>\n",
" <td>Male</td>\n",
" <td>85</td>\n",
" <td>Single</td>\n",
" <td>No</td>\n",
" <td>2</td>\n",
" <td>Normal</td>\n",
" <td>Not applicable</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>5.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>85</td>\n",
" <td>Male</td>\n",
" <td>85</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>1</td>\n",
" <td>Good</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>Maybe</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>6.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>85</td>\n",
" <td>Male</td>\n",
" <td>85</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>2</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Maybe</td>\n",
" <td>Neutral</td>\n",
" <td>Yes</td>\n",
" <td>8.0</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Feeling Gender Age Relationship_Status Happy_With_Financial_State \\\n",
"0 90 Male 90 In a relationship No \n",
"1 90 Female 90 In a relationship No \n",
"2 85 Male 85 Single No \n",
"3 85 Male 85 In a relationship No \n",
"4 85 Male 85 In a relationship No \n",
"\n",
" Succeeded_To_Cope_up_with_Environment Understanding_Family \\\n",
"0 3 Normal \n",
"1 3 Normal \n",
"2 2 Normal \n",
"3 1 Good \n",
"4 2 Normal \n",
"\n",
" Feeling_Pressure Satisfied_with_Job_or_Studies Happy_with_Living_Place \\\n",
"0 Yes No Not applicable \n",
"1 Yes No Not applicable \n",
"2 Not applicable No Yes \n",
"3 Yes No No \n",
"4 Yes No Yes \n",
"\n",
" Inferiority_Complex Satisfied_with_Today_Meal Feeling_Sick Sleeping_Time \\\n",
"0 Maybe Yes No 7.5 \n",
"1 Maybe Yes No 7.5 \n",
"2 Yes Yes No 5.5 \n",
"3 Maybe No No 6.5 \n",
"4 Maybe Neutral Yes 8.0 \n",
"\n",
" Output \n",
"0 Intermediate Risk \n",
"1 Intermediate Risk \n",
"2 Intermediate Risk \n",
"3 Intermediate Risk \n",
"4 Intermediate Risk "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Data.head()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"#Encoding to convert strings in to numbers\n",
"depression_gender_encodings = {\n",
" 'Male': 1,\n",
" 'Female': 0\n",
"}\n",
"depression_relationship_encoding={\n",
" 'In a relationship':1,\n",
" 'Single':0\n",
"}\n",
"depression_family_encoding={\n",
" 'Bad':0,\n",
" 'Normal':1,\n",
" 'Good':2\n",
"}\n",
"depression_encoding={\n",
" 'Yes':1,\n",
" 'No':0,\n",
" 'Maybe':2,\n",
" 'Not applicable':3,\n",
" 'Neutral':4\n",
"}\n",
"depression_output_encoding={\n",
" 'Low Risk':0,\n",
" 'Intermediate Risk':1,\n",
" 'High Risk':2\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"depression_encode_dict = {\n",
" 'Gender': depression_gender_encodings,\n",
" 'Relationship_Status': depression_relationship_encoding,\n",
" 'Happy_With_Financial_State': depression_encoding,\n",
" 'Understanding_Family': depression_family_encoding,\n",
" 'Feeling_Pressure': depression_encoding,\n",
" 'Satisfied_with_Job_or_Studies': depression_encoding,\n",
" 'Happy_with_Living_Place': depression_encoding,\n",
" 'Inferiority_Complex': depression_encoding,\n",
" 'Satisfied_with_Today_Meal': depression_encoding,\n",
" 'Feeling_Sick': depression_encoding,\n",
" 'Output': depression_output_encoding,\n",
"}\n",
"Data.replace(depression_encode_dict, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Feeling</th>\n",
" <th>Gender</th>\n",
" <th>Age</th>\n",
" <th>Relationship_Status</th>\n",
" <th>Happy_With_Financial_State</th>\n",
" <th>Succeeded_To_Cope_up_with_Environment</th>\n",
" <th>Understanding_Family</th>\n",
" <th>Feeling_Pressure</th>\n",
" <th>Satisfied_with_Job_or_Studies</th>\n",
" <th>Happy_with_Living_Place</th>\n",
" <th>Inferiority_Complex</th>\n",
" <th>Satisfied_with_Today_Meal</th>\n",
" <th>Feeling_Sick</th>\n",
" <th>Sleeping_Time</th>\n",
" <th>Output</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>90</td>\n",
" <td>1</td>\n",
" <td>90</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>7.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>90</td>\n",
" <td>0</td>\n",
" <td>90</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>7.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>85</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>5.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>6.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" <td>8.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Feeling Gender Age Relationship_Status Happy_With_Financial_State \\\n",
"0 90 1 90 1 0 \n",
"1 90 0 90 1 0 \n",
"2 85 1 85 0 0 \n",
"3 85 1 85 1 0 \n",
"4 85 1 85 1 0 \n",
"\n",
" Succeeded_To_Cope_up_with_Environment Understanding_Family \\\n",
"0 3 1 \n",
"1 3 1 \n",
"2 2 1 \n",
"3 1 2 \n",
"4 2 1 \n",
"\n",
" Feeling_Pressure Satisfied_with_Job_or_Studies Happy_with_Living_Place \\\n",
"0 1 0 3 \n",
"1 1 0 3 \n",
"2 3 0 1 \n",
"3 1 0 0 \n",
"4 1 0 1 \n",
"\n",
" Inferiority_Complex Satisfied_with_Today_Meal Feeling_Sick \\\n",
"0 2 1 0 \n",
"1 2 1 0 \n",
"2 1 1 0 \n",
"3 2 0 0 \n",
"4 2 4 1 \n",
"\n",
" Sleeping_Time Output \n",
"0 7.5 1 \n",
"1 7.5 1 \n",
"2 5.5 1 \n",
"3 6.5 1 \n",
"4 8.0 1 "
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Data.head()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Feeling</th>\n",
" <th>Gender</th>\n",
" <th>Age</th>\n",
" <th>Relationship_Status</th>\n",
" <th>Happy_With_Financial_State</th>\n",
" <th>Succeeded_To_Cope_up_with_Environment</th>\n",
" <th>Understanding_Family</th>\n",
" <th>Feeling_Pressure</th>\n",
" <th>Satisfied_with_Job_or_Studies</th>\n",
" <th>Happy_with_Living_Place</th>\n",
" <th>Inferiority_Complex</th>\n",
" <th>Satisfied_with_Today_Meal</th>\n",
" <th>Feeling_Sick</th>\n",
" <th>Sleeping_Time</th>\n",
" <th>Output</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>90</td>\n",
" <td>1</td>\n",
" <td>90</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>7.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>90</td>\n",
" <td>0</td>\n",
" <td>90</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>7.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>85</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>5.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>6.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" <td>8.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>992</th>\n",
" <td>55</td>\n",
" <td>0</td>\n",
" <td>15</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>0</td>\n",
" <td>6.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>993</th>\n",
" <td>50</td>\n",
" <td>0</td>\n",
" <td>15</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>0</td>\n",
" <td>7.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>994</th>\n",
" <td>15</td>\n",
" <td>0</td>\n",
" <td>15</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>6.0</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>995</th>\n",
" <td>15</td>\n",
" <td>0</td>\n",
" <td>15</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" <td>4.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>996</th>\n",
" <td>45</td>\n",
" <td>1</td>\n",
" <td>14</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>6.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>997 rows × 15 columns</p>\n",
"</div>"
],
"text/plain": [
" Feeling Gender Age Relationship_Status Happy_With_Financial_State \\\n",
"0 90 1 90 1 0 \n",
"1 90 0 90 1 0 \n",
"2 85 1 85 0 0 \n",
"3 85 1 85 1 0 \n",
"4 85 1 85 1 0 \n",
".. ... ... ... ... ... \n",
"992 55 0 15 0 1 \n",
"993 50 0 15 0 1 \n",
"994 15 0 15 1 0 \n",
"995 15 0 15 0 0 \n",
"996 45 1 14 0 0 \n",
"\n",
" Succeeded_To_Cope_up_with_Environment Understanding_Family \\\n",
"0 3 1 \n",
"1 3 1 \n",
"2 2 1 \n",
"3 1 2 \n",
"4 2 1 \n",
".. ... ... \n",
"992 1 2 \n",
"993 2 2 \n",
"994 1 1 \n",
"995 1 1 \n",
"996 2 2 \n",
"\n",
" Feeling_Pressure Satisfied_with_Job_or_Studies Happy_with_Living_Place \\\n",
"0 1 0 3 \n",
"1 1 0 3 \n",
"2 3 0 1 \n",
"3 1 0 0 \n",
"4 1 0 1 \n",
".. ... ... ... \n",
"992 1 0 1 \n",
"993 1 0 1 \n",
"994 1 0 0 \n",
"995 1 0 1 \n",
"996 0 0 1 \n",
"\n",
" Inferiority_Complex Satisfied_with_Today_Meal Feeling_Sick \\\n",
"0 2 1 0 \n",
"1 2 1 0 \n",
"2 1 1 0 \n",
"3 2 0 0 \n",
"4 2 4 1 \n",
".. ... ... ... \n",
"992 2 4 0 \n",
"993 2 4 0 \n",
"994 1 1 0 \n",
"995 2 4 1 \n",
"996 1 1 0 \n",
"\n",
" Sleeping_Time Output \n",
"0 7.5 1 \n",
"1 7.5 1 \n",
"2 5.5 1 \n",
"3 6.5 1 \n",
"4 8.0 1 \n",
".. ... ... \n",
"992 6.5 1 \n",
"993 7.0 1 \n",
"994 6.0 2 \n",
"995 4.5 1 \n",
"996 6.5 1 \n",
"\n",
"[997 rows x 15 columns]"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Data"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"#Training data\n",
"x = Data.iloc[:, :-1].values"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[90. , 1. , 90. , ..., 1. , 0. , 7.5],\n",
" [90. , 0. , 90. , ..., 1. , 0. , 7.5],\n",
" [85. , 1. , 85. , ..., 1. , 0. , 5.5],\n",
" ...,\n",
" [15. , 0. , 15. , ..., 1. , 0. , 6. ],\n",
" [15. , 0. , 15. , ..., 4. , 1. , 4.5],\n",
" [45. , 1. , 14. , ..., 1. , 0. , 6.5]])"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"#Testing data\n",
"y = Data.iloc[:, -1].values"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,\n",
" 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 2, 1, 1,\n",
" 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1,\n",
" 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1,\n",
" 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1,\n",
" 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 2, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 2, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 2,\n",
" 1, 2, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,\n",
" 1, 1, 2, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,\n",
" 1, 1, 2, 0, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 0, 1,\n",
" 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,\n",
" 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2,\n",
" 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1,\n",
" 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2,\n",
" 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,\n",
" 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1,\n",
" 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1,\n",
" 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1,\n",
" 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1,\n",
" 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1,\n",
" 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1,\n",
" 2, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,\n",
" 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2,\n",
" 1, 2, 1, 1, 2, 1, 1], dtype=int64)"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"#Splitting in to training set and testing set\n",
"from sklearn.model_selection import train_test_split\n",
"X_train,X_test,y_train,y_test = train_test_split(x,y,test_size = 0.2,random_state = 0)\n"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"GradientBoostingClassifier()"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"classifier = GradientBoostingClassifier()\n",
" \n",
"classifier.fit(X_train, y_train)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'LogisticRegression': LogisticRegression(), 'KNeighborsClassifier': KNeighborsClassifier(), 'SVC': SVC(), 'DecisionTreeClassifier': DecisionTreeClassifier(), 'RandomForestClassifier': RandomForestClassifier(), 'GradientBoostingClassifier': GradientBoostingClassifier(), 'GaussianNB': GaussianNB(), 'AdaBoostClassifier': AdaBoostClassifier()}\n"
]
}
],
"source": [
"key = ['LogisticRegression','KNeighborsClassifier','SVC','DecisionTreeClassifier','RandomForestClassifier','GradientBoostingClassifier', 'GaussianNB','AdaBoostClassifier']\n",
"value = [LogisticRegression(),KNeighborsClassifier(),SVC(),DecisionTreeClassifier(),RandomForestClassifier(),GradientBoostingClassifier(),GaussianNB(),AdaBoostClassifier()]\n",
"models = dict(zip(key,value))\n",
"print(models)\n"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"LogisticRegression 0.9\n",
"KNeighborsClassifier 0.875\n",
"SVC 0.82\n",
"DecisionTreeClassifier 0.905\n",
"RandomForestClassifier 0.925\n",
"GradientBoostingClassifier 0.94\n",
"GaussianNB 0.835\n",
"AdaBoostClassifier 0.89\n"
]
}
],
"source": [
"predicted =[]\n",
"for name,algo in models.items():\n",
" model=algo\n",
" model.fit(X_train,y_train)\n",
" predict = model.predict(X_test)\n",
" acc = accuracy_score(y_test, predict)\n",
" predicted.append(acc)\n",
" print(name,acc)\n"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<AxesSubplot:>"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAEvCAYAAABYAjfRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAArIklEQVR4nO3deZhcZZn+8e/NIltiUEFFZBFEEBACRBRFQcANN1AQHVxwYxgXXAZXMCLqiOIyA7gxjAZUEBFch0ERWZRNEggJYVNRHJSfwIissoXn90e9rYe2O12dNOnu5Pu5rlxV9Z5z3vOcOoNz58lbVakqJEmSJPWsMN4FSJIkSROJAVmSJEnqMCBLkiRJHQZkSZIkqcOALEmSJHUYkCVJkqSOlca7AC071lprrdpwww3HuwxJkqQRzZkz5+aqWnuobQZkjZkNN9yQ2bNnj3cZkiRJI0py3XDbXGIhSZIkddhB1pi58vr/Y7v3Hj/eZUiSpIfYnCNeN94lPKTsIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR3LREBOcscYzDEjyZGL2L5hkn/qd/+2z++SzE8yL8k5STZY0jrHSpIDkizbP4MjSZK0GJaJgDwWqmp2VR24iF02BP4WkPvYf8Bzqmor4GzgkCUqEkjPEt+3qvpyVfm70JIkSYMsswE5yfQkF7bu7XeTPKKNP7WNXZDkiCSXt/Gdk/yoPd8pydz259IkU4HDgWe1sXcP2n9Kkq91usWvGKKkC4B12/5rJzklycXtzzM742ckuSTJV5Jcl2St1r2+MskXgUuA9ZK8tx07L8lH2/FrJPnvJJcluTzJPm388CRXtH0/08YOTXLQCO/V2Uk+leSXSa5J8qyH5m5JkiRNHMtsQAaOB97furfzgY+08a8BB1TVDsDCYY49CHhbVU0HngX8FfgA8POqml5Vnx+0/4eBW6vqKe18PxtizhcA32vP/wP4fFU9FXgFcGwb/wjws6raFvgusH7n+E2B46tqm/Z8E2B7YDqwXZJnt3P8saq2rqotgdOTPBLYE9ii1fbxUbxXACtV1fbAuwaNS5IkLZOWyYCcZBqwZlWd04aOA56dZE1galWd38ZPGGaK84DPJTmwzXP/CKfcDfjCwIuquqWz7awkN7Z9Tujsf3SSucAPgIe3LvWOwLfaHKcD3Xmuq6oL2/PntT+X0usob0YvMM8Hdmtd32dV1a3AbcDdwLFJXg7c1S18uPeqs8up7XEOvWUmD5Jk/ySzk8y+/67bh3+HJEmSJollMiAvQvrZqaoOB94MrAZcmGSzPuatYbY9B9gAWAAc1sZWAHZo3ejpVbVuVd0+Qn13DjrfJzvHP7Gq/quqrgG2oxeUP5lkZgv32wOnAHsAp49wLYPd0x4XAisN3lhVx1TVjKqasdLqU0c5tSRJ0sSzTAbk1jm9pbNm9rXAOa2ze3uSp7fxVw11fJKNq2p+VX0KmE2vQ3s7MFwC/Anw9s7xjxhUz1/pLVF4XVvyMHj/6e3pL4BXtrHnAQ+ap+PHwBuTTGn7rpvk0UkeB9xVVd8APgNs2/aZVlWntRqmdyca7r0a5rySJEnLvH/oCE5Sqye5vvP6c8DrgS8nWR24FnhD2/Ym4D+T3EnvmyVuHWK+dyV5Dr2u6RXA/wAPAPcnuQyYRW95w4CPA19oH/hbCHyUvy9NAKCqbkhyIvA24MC2/zx69+Bc4IB23Intw3XnADfQC+ZTBs31kyRPBi5IAnAH8BrgicARSR4A7gP+hV6o/36SVel1nt89xPUO915JkiQtd1I13MqAZVOSKVV1R3v+AWCdqnrnOJcFQJJVgIVVdX+SHYAvtQ8KTgprPPYJtdlrPzreZUiSpIfYnCMm/08pJJlTVTOG2rasdJBH40VJPkjv2q8D9hvfch5kfeDb7XuO7wXeMs71SJIkLXeWu4BcVScBJ413HUOpql8B24x3HZIkScuzZfJDepIkSdLiMiBLkiRJHQZkSZIkqcOALEmSJHUYkCVJkqQOA7IkSZLUYUCWJEmSOpa770HWQ+fJj38Us5eBX9aRJEnLNzvIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdfgtFhoz996wgN8f9pTxLkOSJPVp/Znzx7uECckOsiRJktRhQJYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1DFhA3KSOzrPd0/yqyTrJzk0yV1JHj3UvouY77Qka46wz9lJZgwxvl+So0d5CX1JclCSq5JcnuSyJK9bVC2LeY4ZSY5sz1dJ8tMkc5Psk+TYJJuPxXkkSZKWBRP+p6aT7AocBTyvqn6fBOBm4F+B9/c7T1Xt/tBUuGjpFZyqemCIbQcAzwW2r6rbkkwD9hjrGqpqNjC7vdwGWLmqprfXJ41mriQrVtXCMSxPkiRpQpmwHWSAJM8C/hN4UVX9prPpq8A+SR45xDGvSfLL1iH9SpIV2/jvkqzVnn+4dW3PSHJikoM6U+zdjr+mnX/AeklOT3J1ko90zvee1v29PMm72tiGSa5M8kXgknbsrLbP/CTvbod/CHhrVd0GUFW3VtVxQ1zTl5LMTrIgyUc744cnuSLJvCSfaWN7d7rR57axnZP8qHXdvwFMb+/Pxt1OdZLnJbkgySVJTk4ypfPezUzyC2Dvke6bJEnSZDaRO8irAN8Hdq6qqwZtu4NeSH4n0A2rTwb2AZ5ZVfe1gLovcHxnnxnAK+h1UleiF2DndOZeqaq2T7J7m3u3Nr49sCVwF3Bxkv8GCngD8DQgwEVJzgFuATYF3lBVb02yHbBuVW3ZalgzyVRg6qDgP5yDq+rPLeyfmWQr4HpgT2CzqqrO8pGZwPOr6g+Dl5RU1Y1J3gwcVFUvbrUMvC9rAYcAu1XVnUneD7wHOKwdfndV7dhHrZIkSZPaRO4g3wecD7xpmO1HAq9P8vDO2K7AdvQC7Nz2eqNBx+0IfL+q/lpVtwM/HLT91PY4B9iwM35GVf1fVf217bNj+/Pdqrqzqu5o4wNd5+uq6sL2/FpgoyRHJXkBcBu9QF2LegM6XpnkEuBSYAtg8zbH3cCxSV5OL7gDnAfMSvIWYMU+5wd4epv3vPbevR7YoLN9yKUYSfZv3e3Zf77TlReSJGnym8gB+QHglcBTk3xo8Maq+gtwAvDWznCA46pqevuzaVUdOujQjHDee9rjQh7cYR8cZmuEue7s1HoLsDVwNvA24Ni2rOLOJIMD/IOLTZ4AHATsWlVbAf8NrFpV99Prap9Cb93y6e1cB9DrBK8HzE3yqEXN3z0Vvb8EDLx3m1dV9y8ndw51UFUdU1UzqmrGI9cYTR6XJEmamCZyQKaq7gJeDOybZKhO8ueAf+bvQfZMYK+Bb7hI8sgkGww65hfAS5Ks2tbYvqjPcp7b5luNXiA9DzgX2CPJ6knWoLfk4eeDD2zLF1aoqlOADwPbtk2fBL4w0AVP8vAk+w86/OH0wumtSR4DvLDtOwWYVlWnAe8CprfxjavqoqqaSe/DjOv1eX0XAs9M8sQ2z+pJntTnsZIkScuMibwGGYC29vYFwLlJbh607eYk3wXe3V5fkeQQ4CdJVqC3TONtwHWdYy5O8gPgsjY+G7i1j1J+AXwdeCJwQvtmCJLMAn7Z9jm2qi5NsuGgY9cFvtZqAvhge/wSMIXekpD7Wr2fHXSNlyW5FFhAb6nGeW3TVOD7SVal1/0d+ODfEUk2aWNntuvcaaSLq6qbkuwHnJhklTZ8CHDNSMdKkiQtS1LV7zLYZUeSKVV1R5LV6XWB96+qS8a7rsluq3VXqx/98xPHuwxJktSn9WfOH+8Sxk2SOVU15G9OTPgO8kPkmPR+HGNVemuWDceSJEkCltOAXFX/NN41SJIkaWKa0B/SkyRJkpY2A7IkSZLUYUCWJEmSOgzIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpY7n8HmQ9NB62zhasP3P2eJchSZK0ROwgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1OG3WGjMXHXjVTzzqGeOdxmSJE0q573jvPEuQYPYQZYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1GFAliRJkjoMyMuJJAcnWZBkXpK5Sf4nyScH7TM9yZXt+ZQkX0nym3bcuUmeNj7VS5IkLT3+1PRyIMkOwIuBbavqniRrAVsAXwM+2Nn1VcAJ7fmxwG+BTarqgSQbAU9eimVLkiSNCwPy8mEd4Oaqugegqm4GzknylyRPq6qL2n6vBJ6fZGPgacC+VfVAO+Za4NpxqF2SJGmpconF8uEnwHpJrknyxSQ7tfET6XWNSfJ04P+q6lf0ustzq2rh+JQrSZI0fgzIy4GqugPYDtgfuAk4Kcl+wLeAvZKsQC8onzjauZPsn2R2ktn33XHfGFYtSZI0PlxisZxo3eCzgbOTzAdeX1WzkvwO2Al4BbBD230BsHWSFQaWWCxi3mOAYwCmrD+lHqLyJUmSlho7yMuBJJsm2aQzNB24rj0/Efg88Juquh6gqn4DzAY+miRtjk2SvGzpVS1JkjQ+DMjLhynAcUmuSDIP2Bw4tG07md6a428NOubNwGOBX7eO838Cf1w65UqSJI0fl1gsB6pqDvCMYbbdBKw8xPhtwFse4tIkSZImHDvIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6DMiSJElSh7+kpzGz2aM347x3nDfeZUiSJC0RO8iSJElShwFZkiRJ6jAgS5IkSR0GZEmSJKnDgCxJkiR1+C0WGjO3X3015zx7p/EuQ5IkLUU7nXvOeJcw5uwgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1GFAliRJkjoMyJIkSVKHAVmSJEnqMCBLkiRJHeMekJMsTDI3yYIklyV5T5LFqivJYUl2W8T2A5K8bjHmfX6rcW6SO5Jc3Z4fvzh1Dpr7oCRXJbm8Xf/r2vjZSWYs6fxtrhlJjmzPV0ny01b/PkmOTbL5WJxHkiRpWTARfmr6r1U1HSDJo4ETgGnAR0Y7UVXNHGH7lxenwKr6MfDjVuPZwEFVNbu7T5IVq2rhaOZNcgDwXGD7qrotyTRgj8WpcVFarQP1bgOsPPCeAyeNZq7FuU5JkqTJZNw7yF1VdSOwP/D29KyY5IgkFyeZl+SfB/ZN8r4k81vX9fA2NivJXu354UmuaMd9po0dmuSg9nx6kgvb9u8meUQbPzvJp5L8Msk1SZ41XL1JfpdkZpJfAHsneV6SC5JckuTkJFPaftslOSfJnCQ/TrJOm+JDwFur6rZ2/bdW1XFDnOdLSWa3LvtHO+NDXePenW70uW1s5yQ/an8B+QYwvXWQN+52qhdR/4Ouc7T3VZIkaTKZCB3kB6mqa9sSi0cDLwNuraqnJlkFOC/JT4DN6HVan1ZVdyV5ZHeO9npPYLOqqiRrDnGq44F3VNU5SQ6j17F+V9u2UlVtn2T3Nj7ssg3g7qraMclawKnAblV1Z5L3A+9J8kngKOBlVXVTkn2ATyR5JzC1qn7Tx9tycFX9OcmKwJlJtgKuH+YaZwLPr6o/DL7uqroxyZvpdcBf3N6rgfdsLeCQwfUDh3Wvs49aJUmSJrUJF5CbtMfnAVsNdIXpLb3YhF5g/VpV3QVQVX8edPxtwN3AsUn+G/jRgybvLWVYs6rOaUPHASd3djm1Pc4BNhyh1oElCk8HNqcX4gEeBlwAbApsCZzRxlcEbmjXWCPMPeCVSfand7/Waee5YphrPA+YleTbnevox3D1D77OB2l17Q/wmFVWGcXpJEmSJqYJF5CTbAQsBG6kFyLf0dYAd/d5AYsIl1V1f5LtgV2BVwFvB3YZRRn3tMeFjPwe3TlQFnBGVb16UK1PARZU1Q6DD0xyZ5KNqura4SZP8gTgIOCpVXVLklnAqsNdY1UdkORpwIuAuUmmj1D/3041VP1DXOeDVNUxwDEAm06d2m/glyRJmrAm1BrkJGsDXwaOrqqi98G4f0myctv+pCRrAD8B3phk9TY+eInFFGBaVZ1Gb9nE9O72qroVuKWzvvi1wDksmQuBZyZ5Yqth9SRPAq4G1k6yQxtfOckW7ZhPAl9I8vC27eGtI9v1cHrh9NYkjwFeuKhrTLJxVV3UPrB4M7DeEtYvSZK0XJkIHeTVkswFVgbuB74OfK5tO5beEodL0vt3/5uAParq9NYZnZ3kXuA0eh94GzAV+H6SVel1Rt89xHlfD3y5hexrgTcsyUW09cX7ASe29dIAh1TVNW2JyJFtacdKwL8DC4AvAVOAi5PcB9wHfHbQvJclubTtfy29JRSLusYjkmzSxs4ELgN2Wtz6gWtG9UZIkiRNcuk1aqUlt+nUqXXMNtuOdxmSJGkp2uncJf1H+PGRZE5VDfmbExNqiYUkSZI03gzIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6JsJPTWsZMXXTTSftr+lIkiQNsIMsSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6DMiSJElSh99ioTFz4/W3cvS//nC8y5AkSRPU2z/7kvEuoS92kCVJkqQOA7IkSZLUYUCWJEmSOgzIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpI6HPCAnWZhkbpLLk/wwyZpjNO9+SY4eo7l+l2R+q3NukmeMxbxDnGd6kt0Hjb0wyewkVya5Ksln2vihSQ4aw3Of33l+RJIF7fGAJK8bq/NIkiRNdkvjp6b/WlXTAZIcB7wN+MRSOO9oPaeqbh7NAUlWqqr7R3HIdGAGcFo7fkvgaOBFVXVVkpWA/UdTQ7+qqhv6/xlYu6ruGe08i3HNkiRJk8rSXmJxAbAuQJLtk5yf5NL2uGkb3y/JqUlOT/KrJJ8eODjJG5Jck+Qc4Jmd8Q2SnJlkXntcv43PSvKlJGcluTbJTkm+2rq1sxZV6Ahzfi7JWcCnkmzcap2T5OdJNmv77d265pclOTfJw4DDgH1al3of4H3AJ6rqKoCqur+qvjhELW9JcnGb65Qkqw91jja2RZJftnPMS7JJG7+jPf4AWAO4KMk+3U71Iq7lQdc8ivstSZI06Sy1gJxkRWBX4Adt6Crg2VW1DTAT+LfO7tOBfYCn0AuU6yVZB/govWD8XGDzzv5HA8dX1VbAN4EjO9seAewCvBv4IfB5YAvgKUmmd/Y7q4XKi/qY80nAblX1r8AxwDuqajvgIGAg4M4Enl9VWwMvrap729hJVTW9qk4CtgTmjPjmwalV9dQ215XAm4Y6Rxs7APiP1rWfAVzfnaiqXkrr6rcauoa7lsHXLEmStMxaGkssVksyF9iQXhg8o41PA45rHc4CVu4cc2ZV3QqQ5ApgA2At4OyquqmNn0QvtAHsALy8Pf868OnOXD+sqkoyH/hTVc1vxy9oNc1t+w1eYrGoOU+uqoVJpgDPAE5OMrBtlfZ4HjArybeBUxfx/vRjyyQfB9YEpgA/XsQ5LgAOTvJ4esH6V/2cYIRrgXbNQxy3P21ZyCOmrj2aa5IkSZqQlkYHeWAN8gbAw+itQQb4GHBWVW0JvARYtXNMd23sQv4e5KvPc3b3G5jrgUHzPsDo/oLQnfPO9rgC8JfWjR3482SAqjoAOARYD5ib5FFDzLkA2K6Pc88C3l5VT6HXRV91uHNU1Qn0usl/BX6cZJc+r2/Yaxl0zQ9SVcdU1YyqmjFl9Wl9nkqSJGniWmpLLFpH+EDgoCQr0+sg/6Ft3q+PKS4Cdk7yqHb83p1t5wOvas/3BX4xBiWPOGdV3Qb8NsneAOnZuj3fuKouqqqZwM30QuztwNTOFEcAH0rypHbMCkneM0QtU4Eb2nXvOzA41DmSbARcW1VH0lvOslU/F7uoa5EkSVqeLNUP6VXVpcBl9ILnp4FPJjkPWLGPY28ADqW3hOCnwCWdzQcCb0gyD3gt8M4xKLffOfcF3pTkMnod4Ze18SPS++q4y4Fz6V33WcDmAx/Sq6p5wLuAE5NcCVwOrDPEOT5M7y8IZ9Bbuz1gqHPsA1zelrVsBhw/imse7lokSZKWG6nqd9WCtGjrP3aTet++nxvvMiRJ0gT19s++ZLxL+Jskc6pqxlDb/CU9SZIkqcOALEmSJHUYkCVJkqQOA7IkSZLUYUCWJEmSOgzIkiRJUocBWZIkSeowIEuSJEkdK413AVp2PPrx0ybUF4BLkiQtDjvIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpA6/5k1j5obf/oZPvGav8S5DkiRNYgd/4zvjXYIdZEmSJKnLgCxJkiR1GJAlSZKkDgOyJEmS1GFAliRJkjoMyJIkSVKHAVmSJEnqMCBLkiRJHQZkSZIkqaOvgJzkMUlOSHJtkjlJLkiy5+KeNMmhSQ5qzw9LsttizjM9ye6d1/sluSnJ3CQLknwnyeqLW2cf53tpkg8swXwrJzk8ya+SXJ7kl0le2Lb9LslaY1T33+pMsnaSi5JcmuRZSU5LsuZYnEeSJGlZMGJAThLge8C5VbVRVW0HvAp4/KD9Futnq6tqZlX9dHGOBaYDuw8aO6mqplfVFsC9wD6LOfeI56uqH1TV4Usw38eAdYAtq2pL4CXA1CWqcAiD6twVuKqqtqmqn1fV7lX1l37nSrLiWNcnSZI0kfTTQd4FuLeqvjwwUFXXVdVRrWN7cpIfAj9JMiXJmUkuSTI/ycsGjklycJKrk/wU2LQzPivJXu35dknOaV3qHydZp42fneRTrcN6Tet8Pgw4DNindYwfFIRbYF8DuKW93qDVNq89rj/C+N6tq3tZknOHOl+7/qM713FkkvNbp33gmlZI8sXW0f5R69ju1TrbbwHeUVX3tPf1T1X17cE3IMn32nuyIMn+bWzFds7L23v97jZ+YJIr2vV8q43tl+ToJNOBTwO7t2tYrdupTvKa9h7PTfKVgTCc5I7W6b8I2KGP/5uRJEmatPoJyFsAlyxi+w7A66tqF+BuYM+q2hZ4DvDZ9Ax0nbcBXg48dfAkSVYGjgL2al3qrwKf6OyyUlVtD7wL+EhV3QvM5O8d45PafvskmQv8AXgk8MM2fjRwfFVtBXwTOHKE8ZnA86tqa+Clizhf1zrAjsCLgYGO7cuBDYGnAG/m7wHzicDvq+q2IeYZ7I3tPZkBHJjkUfS62etW1ZZV9RTga23fDwDbtOs5oDtJVc0ddA1/HdiW5Mn0uu3PrKrpwEJg37Z5DeDyqnpaVf2ij3olSZImrVF/SC/JF1pX9eI2dEZV/XlgM/BvSeYBPwXWBR4DPAv4blXd1QLhD4aYelNgS+CMFnAP4cHLOE5tj3PoBc7hnNQC3mOB+cB72/gOwAnt+dfpBdlFjZ8HzEryFqDfZQXfq6oHquoKetdNm+/kNv7/gLP6nKvrwCSXARcC6wGbANcCGyU5KskLgIGgPQ/4ZpLXAPeP4hy7AtsBF7f3f1dgo7ZtIXDKUAcl2T/J7CSz77z7nlFeliRJ0sTTT0BeAGw78KKq3kYvPK3dhu7s7LtvG9+uhdQ/AasOHDrCeQIsaJ3N6VX1lKp6Xmf7QPpaCIy43rmqil73+NnD7bKo8ao6gF5IXw+Y27q2I+kmxAx6HOzXwPpJFrnmOMnOwG7ADq2bfSmwalXdAmwNnA28DTi2HfIi4Av0wu6cUawND3Bc5/3ftKoObdvurqqFQx1UVcdU1YyqmrHGqqv0eSpJkqSJq5+A/DNg1ST/0hkb7pshpgE3VtV9SZ4DbNDGzwX2bGtep9L7MNpgVwNrJ9kB/vYND1uMUNvtLPpDbTsCv2nPz6e3zAN6Qf4XixpPsnFVXVRVM4Gb6QXlkc43lF8Ar2hrkR8D7AxQVXcB/wUc2dY3k2Sd1vntmgbcUlV3JdkMeHrbdy1ghao6BfgwsG2SFYD1quos4H3AmsCUPus8E9gryaPb/I9MssEIx0iSJC1z+urEJtkD+HyS9wE30esavx9YbdDu3wR+mGQ2MBe4qs1xSZKT2th1wM+HOM+97YNtRyaZ1mr7d3od7OGcBXygLQn4ZBvbJ8mO9ML/9cB+bfxA4KtJ3tuu4Q0jjB+RZBN6ndUzgcuA3w9xvpGcQq/jfjlwDXARcGvbdgjwceCKJHfTe19nDjr+dOCAtmzlanrLLKC3fOVrLRQDfJDeUpBvtPcvwOer6i/JcE3sv6uqK5IcQu/DlisA99HrTF/X53VKkiQtE9JbiaCHUpIpVXVHW6bxS3ofhPt/413XWFv3UY+ot75w1/EuQ5IkTWIHf+M7S+U8SeZU1Yyhti3Wdxdr1H6U3o9xPAz42LIYjiVJkpYVBuSloKp2Hu8aJEmS1J9Rf82bJEmStCwzIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktTh17xpzKzzhI2X2pd7S5IkPVTsIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6/Jo3jZm7b7idKz/xs/EuQ5KkZc6TD95lvEtYrthBliRJkjoMyJIkSVKHAVmSJEnqMCBLkiRJHQZkSZIkqcOALEmSJHUYkCVJkqQOA7IkSZLUYUCWJEmSOgzIYyDJY5KckOTaJHOSXJBkz4f4nDOSHLkEx/8uySmd13slmdWe75fkpiRzkyxI8p0kq49B2ZIkSROeAXkJJQnwPeDcqtqoqrYDXgU8/qE8b1XNrqoDl3CaGUm2GGbbSVU1vaq2AO4F9lnCc0mSJE0KBuQltwtwb1V9eWCgqq6rqqOSbJjk50kuaX+eAZBk5yQ/Gtg/ydFJ9mvPD09yRZJ5ST7TxvZOcnmSy5KcO3iOJNsnOT/Jpe1x0za+X5JTk5ye5FdJPj2o9s8AH1rUxSVZCVgDuGXJ3iZJkqTJYaXxLmAZsAVwyTDbbgSeW1V3J9kEOBGYMdxESR4J7AlsVlWVZM22aSbw/Kr6Q2es6yrg2VV1f5LdgH8DXtG2TQe2Ae4Brk5yVFX9b9v2beCtSZ44xJz7JNkRWAe4BvjhcHVLkiQtS+wgj7EkX2id3ouBlYH/TDIfOBnYfITDbwPuBo5N8nLgrjZ+HjAryVuAFYc4bhpwcpLLgc/TC+0DzqyqW6vqbuAKYIPOtoXAEcAHh5jzpKqaDjwWmA+8d5jr3T/J7CSz/3znX0a4PEmSpInPgLzkFgDbDryoqrcBuwJrA+8G/gRsTa9z/LC22/08+L1ftR17P7A9cAqwB3B6Gz8AOARYD5ib5FGDavgYcFZVbQm8ZGC+5p7O84X8478afB14NrD+UBdXVUWve/zsYbYfU1UzqmrGI9dYc6hdJEmSJhUD8pL7GbBqkn/pjA1848M04IaqegB4LX/v/l4HbJ5klSTT6AVqkkwBplXVacC76C2PIMnGVXVRVc0EbqYXlLumAX9oz/cbTfFVdR+9rvO7FrHbjsBvRjOvJEnSZOUa5CXU1grvAXw+yfuAm4A7gffTW5t8SpK9gbPaOFX1v0m+DcwDfgVc2qabCnw/yapA6HWgAY5oa5gDnAlcBuzUKePTwHFJ3kMvsI/Wf9HrUHcNrEFeAbieUQZvSZKkySq9f0GXltyW625aJ7/1S+NdhiRJy5wnH7zLeJewzEkyp6qG/PIEl1hIkiRJHQZkSZIkqcOALEmSJHUYkCVJkqQOA7IkSZLUYUCWJEmSOgzIkiRJUocBWZIkSerwl/Q0ZlZdZ6pfZC5JkiY9O8iSJElShwFZkiRJ6jAgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDr/mTWPmj3/8I4ceeuh4lyFJksbQ8vj/2+0gS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1GFAliRJkjoMyJIkSVKHAVmSJEnqMCBLkiRJHctEQE6yZ5JKstkw289OMmOEOc5OcnWSuUmuTLL/GNe4X5LHdV6vnOTwJL9KcnmSXyZ5Ydv2uyRrjdF5X5rkA+352kkuSnJpkmclOS3JmmNxHkmSpGXFMhGQgVcDvwBetYTz7FtV04FnAp9K8rAlLaxjP+BxndcfA9YBtqyqLYGXAFPH8HwAVNUPqurw9nJX4Kqq2qaqfl5Vu1fVX/qdK8mKY12fJEnSRDPpA3KSKfQC7ZtoATnJakm+lWRekpOA1Tr7fynJ7CQLknx0mGmnAHcCC9sxr04yv3V6P9WZ6x/Gk6yYZFYbm5/k3Un2AmYA32wd6jWAtwDvqKp7AKrqT1X17SGu73tJ5rR69x/uHG38wCRXtOv+VhvbL8nRSaYDnwZ2bzWs1u1UJ3lN62LPTfKVgTCc5I4khyW5CNhhMW6RJEnSpLLSeBcwBvYATq+qa5L8Ocm2wM7AXVW1VZKtgEs6+x9cVX9uAfDMJFtV1by27ZtJ7gE2Ad5VVQvbsohPAdsBtwA/SbIH8Mthxv8XWLd1hUmyZlX9JcnbgYOqanar6fdVdVsf1/fGVu9qwMVJTgE2HHyOtu8HgCdU1T2Dl05U1dwkM4EZVfX2dhzt8cnAPsAzq+q+JF8E9gWOB9YALq+qmX3UKkmSNOlN+g4yveUV32rPv9VePxv4BkALv/M6+78yySXApcAWwOadbftW1VbA+sBBSTYAngqcXVU3VdX9wDfb/MONXwtslOSoJC8A+gnBi3JgksuAC4H16IX34c4xj17Ifw1w/yjOsSu9oH9xkrnt9UZt20LglOEOTLJ/68jPvuuuu0ZxSkmSpIlpUneQkzwK2AXYMkkBKwJFL/zWEPs/ATgIeGpV3ZJkFrDq4P2q6qYWop8G3Dvc6YcabPNuDTwfeBvwSuCNg3b7NbB+kqlVdfsirm9nYDdgh6q6K8nZwKqLOMeL6IX0lwIfTrLFcHMPcS3HVdUHh9h2d1UtHO7AqjoGOAbgcY973D+855IkSZPNZO8g7wUcX1UbVNWGVbUe8Ft6Syr2BUiyJbBV2//h9NYW35rkMcALh5o0yerANsBvgIuAnZKs1ZZlvBo4Z7jxtqZ3hao6BfgwsG2b9nbah/Cq6i7gv4AjBz4ImGSd1vntmgbc0sLxZsDT277/cI4kKwDrVdVZwPuANemtpe7HmcBeSR7d5n9k655LkiQtdyZ1B5leKD180Ngp9MLtaknmAXPprRemqi5LcimwgN4yhfMGHfvNJH8FVgFmVdUcgCQfBM6i12k9raq+P9x46+x+rQVWgIGu7Czgy23+HYBDgI8DVyS5m15wH7zO93TggHYdV9NbZgGw7hDnWBH4RpJprZ7Pt7XPI7yFUFVXJDmE3jrqFYD76HWmrxvxYEmSpGVMqvxXcY2Nxz3ucbX//mP69dGSJGmcHXrooeNdwkMiyZyqGvJ3Mib7EgtJkiRpTBmQJUmSpA4DsiRJktRhQJYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR0GZEmSJKnDHwrRmJkxY0bNnj17vMuQJEkakT8UIkmSJPXJgCxJkiR1GJAlSZKkDtcga8wkuR24erzr0BJbC7h5vIvQEvEeTn7ew8nPezjxbVBVaw+1YaWlXYmWaVcPt9hdk0eS2d7Hyc17OPl5Dyc/7+Hk5hILSZIkqcOALEmSJHUYkDWWjhnvAjQmvI+Tn/dw8vMeTn7ew0nMD+lJkiRJHXaQJUmSpA4DskYtyQuSXJ3k10k+MMT2JDmybZ+XZNvxqFPD6+Me7tvu3bwk5yfZejzq1PBGuoed/Z6aZGGSvZZmfRpZP/cwyc5J5iZZkOScpV2jFq2P/y2dluSHSS5r9/AN41GnRs8lFhqVJCsC1wDPBa4HLgZeXVVXdPbZHXgHsDvwNOA/qupp41CuhtDnPXwGcGVV3ZLkhcCh3sOJo5972NnvDOBu4KtV9Z2lXauG1ud/h2sC5wMvqKrfJ3l0Vd04HvXqH/V5Dz8ETKuq9ydZm95vBTy2qu4dj5rVPzvIGq3tgV9X1bXtP/BvAS8btM/LgOOr50JgzSTrLO1CNawR72FVnV9Vt7SXFwKPX8o1atH6+e8Qen9RPQUwVE08/dzDfwJOrarfAxiOJ5x+7mEBU5MEmAL8Gbh/6ZapxWFA1mitC/xv5/X1bWy0+2j8jPb+vAn4n4e0Io3WiPcwybrAnsCXl2Jd6l8//x0+CXhEkrOTzEnyuqVWnfrRzz08Gngy8EdgPvDOqnpg6ZSnJeEv6Wm0MsTY4HU6/eyj8dP3/UnyHHoBeceHtCKNVj/38N+B91fVwl7zShNMP/dwJWA7YFdgNeCCJBdW1TUPdXHqSz/38PnAXGAXYGPgjCQ/r6rbHuLatIQMyBqt64H1Oq8fT+9vxqPdR+Onr/uTZCvgWOCFVfV/S6k29aefezgD+FYLx2sBuye5v6q+t1Qq1Ej6/d/Sm6vqTuDOJOcCW9Nb96rx1889fANwePU+8PXrJL8FNgN+uXRK1OJyiYVG62JgkyRPSPIw4FXADwbt8wPgde3bLJ4O3FpVNyztQjWsEe9hkvWBU4HX2q2akEa8h1X1hKrasKo2BL4DvNVwPKH087+l3weelWSlJKvT+9DzlUu5Tg2vn3v4e3r/AkCSxwCbAtcu1Sq1WOwga1Sq6v4kbwd+DKxI75PxC5Ic0LZ/GTiN3jdY/Bq4i97foDVB9HkPZwKPAr7YOpD3V9WM8apZD9bnPdQE1s89rKork5wOzAMeAI6tqsvHr2p19fnf4ceAWUnm01uS8f6qunncilbf/Jo3SZIkqcMlFpIkSVKHAVmSJEnqMCBLkiRJHQZkSZIkqcOALEmSJHUYkCVJkqQOA7IkSZLUYUCWJEmSOv4/bFvHJmSfYgMAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 720x360 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize = (10,5))\n",
"sns.barplot(x = predicted, y = key)\n"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"94.0\n"
]
}
],
"source": [
"# predict class labels\n",
"y_pred = classifier.predict(X_test)\n",
"\n",
"# score on test data (accuracy)\n",
"print(accuracy_score(y_test,y_pred)*100)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [],
"source": [
"predict = classifier.predict([[90, 1, 90, 1, 0, 3, 1, 1, 0, 3, 2, 1, 0, 7.5 ]])"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([1], dtype=int64)"
]
},
"execution_count": 70,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predict"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [],
"source": [
"predict = classifier.predict([[45, 1, 14, 0, 0, 2, 2, 0, 0, 1, 1, 1, 0, 6.5]])"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([1], dtype=int64)"
]
},
"execution_count": 72,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predict"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [],
"source": [
"predict1 = classifier.predict([[1,1,24,0,0,1,1,0,0,0,2,0,1,8]])"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([2], dtype=int64)"
]
},
"execution_count": 74,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predict1"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [],
"source": [
"predict2 = classifier.predict([[1, 1, 15, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 4.0]])"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([2], dtype=int64)"
]
},
"execution_count": 76,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predict2"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {},
"outputs": [],
"source": [
"pre = classifier.predict([[90,1,74,1,1,3,1,0,1,1,0,1,0,7.5]])"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0], dtype=int64)"
]
},
"execution_count": 78,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pre"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {},
"outputs": [],
"source": [
"p = classifier.predict([[15, 0, 15, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 6.0]])"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([2], dtype=int64)"
]
},
"execution_count": 80,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"p"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 997 entries, 0 to 996\n",
"Data columns (total 15 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Feeling 997 non-null int64 \n",
" 1 Gender 997 non-null int64 \n",
" 2 Age 997 non-null int64 \n",
" 3 Relationship_Status 997 non-null int64 \n",
" 4 Happy_With_Financial_State 997 non-null int64 \n",
" 5 Succeeded_To_Cope_up_with_Environment 997 non-null int64 \n",
" 6 Understanding_Family 997 non-null int64 \n",
" 7 Feeling_Pressure 997 non-null int64 \n",
" 8 Satisfied_with_Job_or_Studies 997 non-null int64 \n",
" 9 Happy_with_Living_Place 997 non-null int64 \n",
" 10 Inferiority_Complex 997 non-null int64 \n",
" 11 Satisfied_with_Today_Meal 997 non-null int64 \n",
" 12 Feeling_Sick 997 non-null int64 \n",
" 13 Sleeping_Time 997 non-null float64\n",
" 14 Output 997 non-null int64 \n",
"dtypes: float64(1), int64(14)\n",
"memory usage: 117.0 KB\n"
]
}
],
"source": [
"Data.info()"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {},
"outputs": [],
"source": [
"p3 = classifier.predict([[15,0,15,1,0,1,1,1,0,0,1,1,0,6.0]])"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([2], dtype=int64)"
]
},
"execution_count": 82,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"p3"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {},
"outputs": [],
"source": [
"p4 = classifier.predict([[90,1,90,1,0,3,1,1,0,3,2,1,0,7.5]])"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([1], dtype=int64)"
]
},
"execution_count": 84,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"p4"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: flask-ngrok in c:\\users\\dell\\anaconda3\\lib\\site-packages (0.0.25)\n",
"Requirement already satisfied: Flask>=0.8 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from flask-ngrok) (1.1.2)\n",
"Requirement already satisfied: requests in c:\\users\\dell\\anaconda3\\lib\\site-packages (from flask-ngrok) (2.24.0)\n",
"Requirement already satisfied: click>=5.1 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from Flask>=0.8->flask-ngrok) (7.1.2)\n",
"Requirement already satisfied: Jinja2>=2.10.1 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from Flask>=0.8->flask-ngrok) (2.11.2)\n",
"Requirement already satisfied: itsdangerous>=0.24 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from Flask>=0.8->flask-ngrok) (1.1.0)\n",
"Requirement already satisfied: Werkzeug>=0.15 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from Flask>=0.8->flask-ngrok) (1.0.1)\n",
"Requirement already satisfied: chardet<4,>=3.0.2 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from requests->flask-ngrok) (3.0.4)\n",
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from requests->flask-ngrok) (1.25.11)\n",
"Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from requests->flask-ngrok) (2020.6.20)\n",
"Requirement already satisfied: idna<3,>=2.5 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from requests->flask-ngrok) (2.10)\n",
"Requirement already satisfied: MarkupSafe>=0.23 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from Jinja2>=2.10.1->Flask>=0.8->flask-ngrok) (1.1.1)\n"
]
}
],
"source": [
"!pip install flask-ngrok"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" * Serving Flask app \"__main__\" (lazy loading)\n",
" * Environment: production\n",
" WARNING: This is a development server. Do not use it in a production deployment.\n",
" Use a production WSGI server instead.\n",
" * Debug mode: off\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" * Running on http://f85a68216a1d.ngrok.io\n",
" * Traffic stats available on http://127.0.0.1:4040\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"127.0.0.1 - - [06/Jul/2021 00:07:10] \"\u001b[33mGET / HTTP/1.1\u001b[0m\" 404 -\n",
"127.0.0.1 - - [06/Jul/2021 00:07:29] \"\u001b[37mGET /15/25/1/6.0/Male/Single/No/Normal/Yes/No/No/Yes/no/yes HTTP/1.1\u001b[0m\" 200 -\n"
]
}
],
"source": [
"from flask_ngrok import run_with_ngrok\n",
"from flask import Flask,jsonify\n",
"app=Flask(__name__)\n",
"run_with_ngrok(app)\n",
"@app.route(\"/<int:Feeling>/<Gender>/<int:Age>/<Relationship_Status>/<Happy_With_Financial_State>/<int:Succeeded_To_Cope_up_with_Environment>/<Understanding_Family>/<Feeling_Pressure>/<Satisfied_with_Job_or_Studies>/<Happy_with_Living_Place>/<Inferiority_Complex>/<Satisfied_with_Today_Meal>/<Feeling_Sick>/<float:Sleeping_Time>\")\n",
"def home(Feeling,Gender,Age,Relationship_Status,Happy_With_Financial_State,Succeeded_To_Cope_up_with_Environment,Understanding_Family,Feeling_Pressure,Satisfied_with_Job_or_Studies,Happy_with_Living_Place,Inferiority_Complex,Satisfied_with_Today_Meal,Feeling_Sick,Sleeping_Time):\n",
" p = []\n",
" p += [Feeling,Age,Succeeded_To_Cope_up_with_Environment,Sleeping_Time]\n",
" if Gender.casefold() == \"Male\":\n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" if Relationship_Status.casefold() == \"In a relationship\":\n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" if Happy_With_Financial_State.casefold() == \"Yes\":\n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" if Understanding_Family.casefold() == \"Good\":\n",
" p += [2]\n",
" elif Understanding_Family.casefold() == \"Normal\":\n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" if Feeling_Pressure.casefold() == \"Not applicable\":\n",
" p += [3]\n",
" elif Feeling_Pressure.casefold() == \"Yes\":\n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" if Satisfied_with_Job_or_Studies.casefold() == \"Not applicable\":\n",
" p += [3]\n",
" elif Satisfied_with_Job_or_Studies.casefold() == \"Yes\": \n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" if Happy_with_Living_Place.casefold() == \"Not applicable\": \n",
" p += [3]\n",
" elif Happy_with_Living_Place.casefold() == \"Yes\": \n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" if Inferiority_Complex.casefold() == \"Maybe\":\n",
" p += [2]\n",
" elif Inferiority_Complex.casefold() == \"Not applicable\":\n",
" p += [3]\n",
" elif Inferiority_Complex.casefold() == \"Yes\":\n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" if Satisfied_with_Today_Meal.casefold() == \"Neutral\":\n",
" p += [4] \n",
" elif Satisfied_with_Today_Meal.casefold() == \"Yes\":\n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" if Feeling_Sick.casefold() == \"Yes\":\n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" arr = np.array([p])\n",
" predict = classifier.predict(arr)\n",
" if predict == [2]:\n",
" result = {'result':'High Risk'}\n",
" elif predict == [1]:\n",
" result = {'result':'Intermediate Risk'}\n",
" else:\n",
" result = {'result':'Low Risk'}\n",
" \n",
" return jsonify(result)\n",
"app.run()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np \n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\")\n",
"from sklearn.metrics import accuracy_score\n",
"from sklearn.metrics import confusion_matrix\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.svm import SVC\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn.ensemble import GradientBoostingClassifier\n",
"from sklearn.ensemble import AdaBoostClassifier\n",
"from sklearn.naive_bayes import GaussianNB\n",
"from sklearn.model_selection import GridSearchCV"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"#Importing the dataset\n",
"Data = pd.read_csv('depression_happiness.csv')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Feeling</th>\n",
" <th>Gender</th>\n",
" <th>Age</th>\n",
" <th>Relationship_Status</th>\n",
" <th>Happy_With_Financial_State</th>\n",
" <th>Succeeded_To_Cope_up_with_Environment</th>\n",
" <th>Understanding_Family</th>\n",
" <th>Feeling_Pressure</th>\n",
" <th>Satisfied_with_Job_or_Studies</th>\n",
" <th>Happy_with_Living_Place</th>\n",
" <th>Inferiority_Complex</th>\n",
" <th>Satisfied_with_Today_Meal</th>\n",
" <th>Feeling_Sick</th>\n",
" <th>Sleeping_Time</th>\n",
" <th>Output</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>90</td>\n",
" <td>Male</td>\n",
" <td>90</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>3</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Not applicable</td>\n",
" <td>Maybe</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>7.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>90</td>\n",
" <td>Female</td>\n",
" <td>90</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>3</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Not applicable</td>\n",
" <td>Maybe</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>7.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>85</td>\n",
" <td>Male</td>\n",
" <td>85</td>\n",
" <td>Single</td>\n",
" <td>No</td>\n",
" <td>2</td>\n",
" <td>Normal</td>\n",
" <td>Not applicable</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>5.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>85</td>\n",
" <td>Male</td>\n",
" <td>85</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>1</td>\n",
" <td>Good</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>Maybe</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>6.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>85</td>\n",
" <td>Male</td>\n",
" <td>85</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>2</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Maybe</td>\n",
" <td>Neutral</td>\n",
" <td>Yes</td>\n",
" <td>8.0</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>995</th>\n",
" <td>55</td>\n",
" <td>Female</td>\n",
" <td>15</td>\n",
" <td>Single</td>\n",
" <td>Yes</td>\n",
" <td>1</td>\n",
" <td>Good</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Maybe</td>\n",
" <td>Neutral</td>\n",
" <td>No</td>\n",
" <td>6.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>996</th>\n",
" <td>50</td>\n",
" <td>Female</td>\n",
" <td>15</td>\n",
" <td>Single</td>\n",
" <td>Yes</td>\n",
" <td>2</td>\n",
" <td>Good</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Maybe</td>\n",
" <td>Neutral</td>\n",
" <td>No</td>\n",
" <td>7.0</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>997</th>\n",
" <td>15</td>\n",
" <td>Female</td>\n",
" <td>15</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>1</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>6.0</td>\n",
" <td>High Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>998</th>\n",
" <td>15</td>\n",
" <td>Female</td>\n",
" <td>15</td>\n",
" <td>Single</td>\n",
" <td>No</td>\n",
" <td>1</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Maybe</td>\n",
" <td>Neutral</td>\n",
" <td>Yes</td>\n",
" <td>4.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>999</th>\n",
" <td>45</td>\n",
" <td>Male</td>\n",
" <td>14</td>\n",
" <td>Single</td>\n",
" <td>No</td>\n",
" <td>2</td>\n",
" <td>Good</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>6.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>1000 rows × 15 columns</p>\n",
"</div>"
],
"text/plain": [
" Feeling Gender Age Relationship_Status Happy_With_Financial_State \\\n",
"0 90 Male 90 In a relationship No \n",
"1 90 Female 90 In a relationship No \n",
"2 85 Male 85 Single No \n",
"3 85 Male 85 In a relationship No \n",
"4 85 Male 85 In a relationship No \n",
".. ... ... ... ... ... \n",
"995 55 Female 15 Single Yes \n",
"996 50 Female 15 Single Yes \n",
"997 15 Female 15 In a relationship No \n",
"998 15 Female 15 Single No \n",
"999 45 Male 14 Single No \n",
"\n",
" Succeeded_To_Cope_up_with_Environment Understanding_Family \\\n",
"0 3 Normal \n",
"1 3 Normal \n",
"2 2 Normal \n",
"3 1 Good \n",
"4 2 Normal \n",
".. ... ... \n",
"995 1 Good \n",
"996 2 Good \n",
"997 1 Normal \n",
"998 1 Normal \n",
"999 2 Good \n",
"\n",
" Feeling_Pressure Satisfied_with_Job_or_Studies Happy_with_Living_Place \\\n",
"0 Yes No Not applicable \n",
"1 Yes No Not applicable \n",
"2 Not applicable No Yes \n",
"3 Yes No No \n",
"4 Yes No Yes \n",
".. ... ... ... \n",
"995 Yes No Yes \n",
"996 Yes No Yes \n",
"997 Yes No No \n",
"998 Yes No Yes \n",
"999 No No Yes \n",
"\n",
" Inferiority_Complex Satisfied_with_Today_Meal Feeling_Sick Sleeping_Time \\\n",
"0 Maybe Yes No 7.5 \n",
"1 Maybe Yes No 7.5 \n",
"2 Yes Yes No 5.5 \n",
"3 Maybe No No 6.5 \n",
"4 Maybe Neutral Yes 8.0 \n",
".. ... ... ... ... \n",
"995 Maybe Neutral No 6.5 \n",
"996 Maybe Neutral No 7.0 \n",
"997 Yes Yes No 6.0 \n",
"998 Maybe Neutral Yes 4.5 \n",
"999 Yes Yes No 6.5 \n",
"\n",
" Output \n",
"0 Intermediate Risk \n",
"1 Intermediate Risk \n",
"2 Intermediate Risk \n",
"3 Intermediate Risk \n",
"4 Intermediate Risk \n",
".. ... \n",
"995 Intermediate Risk \n",
"996 Intermediate Risk \n",
"997 High Risk \n",
"998 Intermediate Risk \n",
"999 Intermediate Risk \n",
"\n",
"[1000 rows x 15 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Data"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(1000, 15)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Data.shape"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Feeling</th>\n",
" <th>Gender</th>\n",
" <th>Age</th>\n",
" <th>Relationship_Status</th>\n",
" <th>Happy_With_Financial_State</th>\n",
" <th>Succeeded_To_Cope_up_with_Environment</th>\n",
" <th>Understanding_Family</th>\n",
" <th>Feeling_Pressure</th>\n",
" <th>Satisfied_with_Job_or_Studies</th>\n",
" <th>Happy_with_Living_Place</th>\n",
" <th>Inferiority_Complex</th>\n",
" <th>Satisfied_with_Today_Meal</th>\n",
" <th>Feeling_Sick</th>\n",
" <th>Sleeping_Time</th>\n",
" <th>Output</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>90</td>\n",
" <td>Male</td>\n",
" <td>90</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>3</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Not applicable</td>\n",
" <td>Maybe</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>7.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>90</td>\n",
" <td>Female</td>\n",
" <td>90</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>3</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Not applicable</td>\n",
" <td>Maybe</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>7.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>85</td>\n",
" <td>Male</td>\n",
" <td>85</td>\n",
" <td>Single</td>\n",
" <td>No</td>\n",
" <td>2</td>\n",
" <td>Normal</td>\n",
" <td>Not applicable</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>5.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>85</td>\n",
" <td>Male</td>\n",
" <td>85</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>1</td>\n",
" <td>Good</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>Maybe</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>6.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>85</td>\n",
" <td>Male</td>\n",
" <td>85</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>2</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Maybe</td>\n",
" <td>Neutral</td>\n",
" <td>Yes</td>\n",
" <td>8.0</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Feeling Gender Age Relationship_Status Happy_With_Financial_State \\\n",
"0 90 Male 90 In a relationship No \n",
"1 90 Female 90 In a relationship No \n",
"2 85 Male 85 Single No \n",
"3 85 Male 85 In a relationship No \n",
"4 85 Male 85 In a relationship No \n",
"\n",
" Succeeded_To_Cope_up_with_Environment Understanding_Family \\\n",
"0 3 Normal \n",
"1 3 Normal \n",
"2 2 Normal \n",
"3 1 Good \n",
"4 2 Normal \n",
"\n",
" Feeling_Pressure Satisfied_with_Job_or_Studies Happy_with_Living_Place \\\n",
"0 Yes No Not applicable \n",
"1 Yes No Not applicable \n",
"2 Not applicable No Yes \n",
"3 Yes No No \n",
"4 Yes No Yes \n",
"\n",
" Inferiority_Complex Satisfied_with_Today_Meal Feeling_Sick Sleeping_Time \\\n",
"0 Maybe Yes No 7.5 \n",
"1 Maybe Yes No 7.5 \n",
"2 Yes Yes No 5.5 \n",
"3 Maybe No No 6.5 \n",
"4 Maybe Neutral Yes 8.0 \n",
"\n",
" Output \n",
"0 Intermediate Risk \n",
"1 Intermediate Risk \n",
"2 Intermediate Risk \n",
"3 Intermediate Risk \n",
"4 Intermediate Risk "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Data.head()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Finding the sum of duplicate records\n",
"Data.duplicated().sum()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Feeling</th>\n",
" <th>Gender</th>\n",
" <th>Age</th>\n",
" <th>Relationship_Status</th>\n",
" <th>Happy_With_Financial_State</th>\n",
" <th>Succeeded_To_Cope_up_with_Environment</th>\n",
" <th>Understanding_Family</th>\n",
" <th>Feeling_Pressure</th>\n",
" <th>Satisfied_with_Job_or_Studies</th>\n",
" <th>Happy_with_Living_Place</th>\n",
" <th>Inferiority_Complex</th>\n",
" <th>Satisfied_with_Today_Meal</th>\n",
" <th>Feeling_Sick</th>\n",
" <th>Sleeping_Time</th>\n",
" <th>Output</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>75</td>\n",
" <td>Male</td>\n",
" <td>75</td>\n",
" <td>Single</td>\n",
" <td>Yes</td>\n",
" <td>1</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Maybe</td>\n",
" <td>Neutral</td>\n",
" <td>No</td>\n",
" <td>6.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>40</th>\n",
" <td>75</td>\n",
" <td>Male</td>\n",
" <td>71</td>\n",
" <td>Single</td>\n",
" <td>Yes</td>\n",
" <td>2</td>\n",
" <td>Good</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>Neutral</td>\n",
" <td>No</td>\n",
" <td>6.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>298</th>\n",
" <td>50</td>\n",
" <td>Male</td>\n",
" <td>51</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>3</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Not applicable</td>\n",
" <td>Maybe</td>\n",
" <td>Neutral</td>\n",
" <td>Yes</td>\n",
" <td>6.0</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Feeling Gender Age Relationship_Status Happy_With_Financial_State \\\n",
"18 75 Male 75 Single Yes \n",
"40 75 Male 71 Single Yes \n",
"298 50 Male 51 In a relationship No \n",
"\n",
" Succeeded_To_Cope_up_with_Environment Understanding_Family \\\n",
"18 1 Normal \n",
"40 2 Good \n",
"298 3 Normal \n",
"\n",
" Feeling_Pressure Satisfied_with_Job_or_Studies Happy_with_Living_Place \\\n",
"18 Yes No Yes \n",
"40 Yes No Yes \n",
"298 Yes No Not applicable \n",
"\n",
" Inferiority_Complex Satisfied_with_Today_Meal Feeling_Sick Sleeping_Time \\\n",
"18 Maybe Neutral No 6.5 \n",
"40 Yes Neutral No 6.5 \n",
"298 Maybe Neutral Yes 6.0 \n",
"\n",
" Output \n",
"18 Intermediate Risk \n",
"40 Intermediate Risk \n",
"298 Intermediate Risk "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Data[Data.duplicated()]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"#Dropping the duplicate values \n",
"Data.drop_duplicates(inplace=True)\n",
"Data.reset_index(drop=True, inplace=True)\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(997, 15)"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Data.shape"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Feeling 0\n",
"Gender 0\n",
"Age 0\n",
"Relationship_Status 0\n",
"Happy_With_Financial_State 0\n",
"Succeeded_To_Cope_up_with_Environment 0\n",
"Understanding_Family 0\n",
"Feeling_Pressure 0\n",
"Satisfied_with_Job_or_Studies 0\n",
"Happy_with_Living_Place 0\n",
"Inferiority_Complex 0\n",
"Satisfied_with_Today_Meal 0\n",
"Feeling_Sick 0\n",
"Sleeping_Time 0\n",
"Output 0\n",
"dtype: int64"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Checking for null values\n",
"Data.isnull().sum()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"Data.reset_index(drop=True,inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Feeling</th>\n",
" <th>Gender</th>\n",
" <th>Age</th>\n",
" <th>Relationship_Status</th>\n",
" <th>Happy_With_Financial_State</th>\n",
" <th>Succeeded_To_Cope_up_with_Environment</th>\n",
" <th>Understanding_Family</th>\n",
" <th>Feeling_Pressure</th>\n",
" <th>Satisfied_with_Job_or_Studies</th>\n",
" <th>Happy_with_Living_Place</th>\n",
" <th>Inferiority_Complex</th>\n",
" <th>Satisfied_with_Today_Meal</th>\n",
" <th>Feeling_Sick</th>\n",
" <th>Sleeping_Time</th>\n",
" <th>Output</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>90</td>\n",
" <td>Male</td>\n",
" <td>90</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>3</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Not applicable</td>\n",
" <td>Maybe</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>7.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>90</td>\n",
" <td>Female</td>\n",
" <td>90</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>3</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Not applicable</td>\n",
" <td>Maybe</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>7.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>85</td>\n",
" <td>Male</td>\n",
" <td>85</td>\n",
" <td>Single</td>\n",
" <td>No</td>\n",
" <td>2</td>\n",
" <td>Normal</td>\n",
" <td>Not applicable</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>5.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>85</td>\n",
" <td>Male</td>\n",
" <td>85</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>1</td>\n",
" <td>Good</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>Maybe</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>6.5</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>85</td>\n",
" <td>Male</td>\n",
" <td>85</td>\n",
" <td>In a relationship</td>\n",
" <td>No</td>\n",
" <td>2</td>\n",
" <td>Normal</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>Maybe</td>\n",
" <td>Neutral</td>\n",
" <td>Yes</td>\n",
" <td>8.0</td>\n",
" <td>Intermediate Risk</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Feeling Gender Age Relationship_Status Happy_With_Financial_State \\\n",
"0 90 Male 90 In a relationship No \n",
"1 90 Female 90 In a relationship No \n",
"2 85 Male 85 Single No \n",
"3 85 Male 85 In a relationship No \n",
"4 85 Male 85 In a relationship No \n",
"\n",
" Succeeded_To_Cope_up_with_Environment Understanding_Family \\\n",
"0 3 Normal \n",
"1 3 Normal \n",
"2 2 Normal \n",
"3 1 Good \n",
"4 2 Normal \n",
"\n",
" Feeling_Pressure Satisfied_with_Job_or_Studies Happy_with_Living_Place \\\n",
"0 Yes No Not applicable \n",
"1 Yes No Not applicable \n",
"2 Not applicable No Yes \n",
"3 Yes No No \n",
"4 Yes No Yes \n",
"\n",
" Inferiority_Complex Satisfied_with_Today_Meal Feeling_Sick Sleeping_Time \\\n",
"0 Maybe Yes No 7.5 \n",
"1 Maybe Yes No 7.5 \n",
"2 Yes Yes No 5.5 \n",
"3 Maybe No No 6.5 \n",
"4 Maybe Neutral Yes 8.0 \n",
"\n",
" Output \n",
"0 Intermediate Risk \n",
"1 Intermediate Risk \n",
"2 Intermediate Risk \n",
"3 Intermediate Risk \n",
"4 Intermediate Risk "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Data.head()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"#Encoding to convert strings in to numbers\n",
"depression_gender_encodings = {\n",
" 'Male': 1,\n",
" 'Female': 0\n",
"}\n",
"depression_relationship_encoding={\n",
" 'In a relationship':1,\n",
" 'Single':0\n",
"}\n",
"depression_family_encoding={\n",
" 'Bad':0,\n",
" 'Normal':1,\n",
" 'Good':2\n",
"}\n",
"depression_encoding={\n",
" 'Yes':1,\n",
" 'No':0,\n",
" 'Maybe':2,\n",
" 'Not applicable':3,\n",
" 'Neutral':4\n",
"}\n",
"depression_output_encoding={\n",
" 'Low Risk':0,\n",
" 'Intermediate Risk':1,\n",
" 'High Risk':2\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"depression_encode_dict = {\n",
" 'Gender': depression_gender_encodings,\n",
" 'Relationship_Status': depression_relationship_encoding,\n",
" 'Happy_With_Financial_State': depression_encoding,\n",
" 'Understanding_Family': depression_family_encoding,\n",
" 'Feeling_Pressure': depression_encoding,\n",
" 'Satisfied_with_Job_or_Studies': depression_encoding,\n",
" 'Happy_with_Living_Place': depression_encoding,\n",
" 'Inferiority_Complex': depression_encoding,\n",
" 'Satisfied_with_Today_Meal': depression_encoding,\n",
" 'Feeling_Sick': depression_encoding,\n",
" 'Output': depression_output_encoding,\n",
"}\n",
"Data.replace(depression_encode_dict, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Feeling</th>\n",
" <th>Gender</th>\n",
" <th>Age</th>\n",
" <th>Relationship_Status</th>\n",
" <th>Happy_With_Financial_State</th>\n",
" <th>Succeeded_To_Cope_up_with_Environment</th>\n",
" <th>Understanding_Family</th>\n",
" <th>Feeling_Pressure</th>\n",
" <th>Satisfied_with_Job_or_Studies</th>\n",
" <th>Happy_with_Living_Place</th>\n",
" <th>Inferiority_Complex</th>\n",
" <th>Satisfied_with_Today_Meal</th>\n",
" <th>Feeling_Sick</th>\n",
" <th>Sleeping_Time</th>\n",
" <th>Output</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>90</td>\n",
" <td>1</td>\n",
" <td>90</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>7.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>90</td>\n",
" <td>0</td>\n",
" <td>90</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>7.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>85</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>5.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>6.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" <td>8.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Feeling Gender Age Relationship_Status Happy_With_Financial_State \\\n",
"0 90 1 90 1 0 \n",
"1 90 0 90 1 0 \n",
"2 85 1 85 0 0 \n",
"3 85 1 85 1 0 \n",
"4 85 1 85 1 0 \n",
"\n",
" Succeeded_To_Cope_up_with_Environment Understanding_Family \\\n",
"0 3 1 \n",
"1 3 1 \n",
"2 2 1 \n",
"3 1 2 \n",
"4 2 1 \n",
"\n",
" Feeling_Pressure Satisfied_with_Job_or_Studies Happy_with_Living_Place \\\n",
"0 1 0 3 \n",
"1 1 0 3 \n",
"2 3 0 1 \n",
"3 1 0 0 \n",
"4 1 0 1 \n",
"\n",
" Inferiority_Complex Satisfied_with_Today_Meal Feeling_Sick \\\n",
"0 2 1 0 \n",
"1 2 1 0 \n",
"2 1 1 0 \n",
"3 2 0 0 \n",
"4 2 4 1 \n",
"\n",
" Sleeping_Time Output \n",
"0 7.5 1 \n",
"1 7.5 1 \n",
"2 5.5 1 \n",
"3 6.5 1 \n",
"4 8.0 1 "
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Data.head()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Feeling</th>\n",
" <th>Gender</th>\n",
" <th>Age</th>\n",
" <th>Relationship_Status</th>\n",
" <th>Happy_With_Financial_State</th>\n",
" <th>Succeeded_To_Cope_up_with_Environment</th>\n",
" <th>Understanding_Family</th>\n",
" <th>Feeling_Pressure</th>\n",
" <th>Satisfied_with_Job_or_Studies</th>\n",
" <th>Happy_with_Living_Place</th>\n",
" <th>Inferiority_Complex</th>\n",
" <th>Satisfied_with_Today_Meal</th>\n",
" <th>Feeling_Sick</th>\n",
" <th>Sleeping_Time</th>\n",
" <th>Output</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>90</td>\n",
" <td>1</td>\n",
" <td>90</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>7.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>90</td>\n",
" <td>0</td>\n",
" <td>90</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>7.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>85</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>5.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>6.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>85</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" <td>8.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>992</th>\n",
" <td>55</td>\n",
" <td>0</td>\n",
" <td>15</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>0</td>\n",
" <td>6.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>993</th>\n",
" <td>50</td>\n",
" <td>0</td>\n",
" <td>15</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>0</td>\n",
" <td>7.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>994</th>\n",
" <td>15</td>\n",
" <td>0</td>\n",
" <td>15</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>6.0</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>995</th>\n",
" <td>15</td>\n",
" <td>0</td>\n",
" <td>15</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" <td>4.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>996</th>\n",
" <td>45</td>\n",
" <td>1</td>\n",
" <td>14</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>6.5</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>997 rows × 15 columns</p>\n",
"</div>"
],
"text/plain": [
" Feeling Gender Age Relationship_Status Happy_With_Financial_State \\\n",
"0 90 1 90 1 0 \n",
"1 90 0 90 1 0 \n",
"2 85 1 85 0 0 \n",
"3 85 1 85 1 0 \n",
"4 85 1 85 1 0 \n",
".. ... ... ... ... ... \n",
"992 55 0 15 0 1 \n",
"993 50 0 15 0 1 \n",
"994 15 0 15 1 0 \n",
"995 15 0 15 0 0 \n",
"996 45 1 14 0 0 \n",
"\n",
" Succeeded_To_Cope_up_with_Environment Understanding_Family \\\n",
"0 3 1 \n",
"1 3 1 \n",
"2 2 1 \n",
"3 1 2 \n",
"4 2 1 \n",
".. ... ... \n",
"992 1 2 \n",
"993 2 2 \n",
"994 1 1 \n",
"995 1 1 \n",
"996 2 2 \n",
"\n",
" Feeling_Pressure Satisfied_with_Job_or_Studies Happy_with_Living_Place \\\n",
"0 1 0 3 \n",
"1 1 0 3 \n",
"2 3 0 1 \n",
"3 1 0 0 \n",
"4 1 0 1 \n",
".. ... ... ... \n",
"992 1 0 1 \n",
"993 1 0 1 \n",
"994 1 0 0 \n",
"995 1 0 1 \n",
"996 0 0 1 \n",
"\n",
" Inferiority_Complex Satisfied_with_Today_Meal Feeling_Sick \\\n",
"0 2 1 0 \n",
"1 2 1 0 \n",
"2 1 1 0 \n",
"3 2 0 0 \n",
"4 2 4 1 \n",
".. ... ... ... \n",
"992 2 4 0 \n",
"993 2 4 0 \n",
"994 1 1 0 \n",
"995 2 4 1 \n",
"996 1 1 0 \n",
"\n",
" Sleeping_Time Output \n",
"0 7.5 1 \n",
"1 7.5 1 \n",
"2 5.5 1 \n",
"3 6.5 1 \n",
"4 8.0 1 \n",
".. ... ... \n",
"992 6.5 1 \n",
"993 7.0 1 \n",
"994 6.0 2 \n",
"995 4.5 1 \n",
"996 6.5 1 \n",
"\n",
"[997 rows x 15 columns]"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Data"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"#Training data\n",
"x = Data.iloc[:, :-1].values"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[90. , 1. , 90. , ..., 1. , 0. , 7.5],\n",
" [90. , 0. , 90. , ..., 1. , 0. , 7.5],\n",
" [85. , 1. , 85. , ..., 1. , 0. , 5.5],\n",
" ...,\n",
" [15. , 0. , 15. , ..., 1. , 0. , 6. ],\n",
" [15. , 0. , 15. , ..., 4. , 1. , 4.5],\n",
" [45. , 1. , 14. , ..., 1. , 0. , 6.5]])"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"#Testing data\n",
"y = Data.iloc[:, -1].values"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,\n",
" 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 2, 1, 1,\n",
" 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1,\n",
" 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1,\n",
" 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1,\n",
" 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 2, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 2, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 2,\n",
" 1, 2, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,\n",
" 1, 1, 2, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,\n",
" 1, 1, 2, 0, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 0, 1,\n",
" 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,\n",
" 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2,\n",
" 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1,\n",
" 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2,\n",
" 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,\n",
" 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1,\n",
" 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1,\n",
" 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1,\n",
" 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1,\n",
" 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1,\n",
" 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1,\n",
" 2, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,\n",
" 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2,\n",
" 1, 2, 1, 1, 2, 1, 1], dtype=int64)"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"#Splitting in to training set and testing set\n",
"from sklearn.model_selection import train_test_split\n",
"X_train,X_test,y_train,y_test = train_test_split(x,y,test_size = 0.2,random_state = 0)\n"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"GradientBoostingClassifier()"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"classifier = GradientBoostingClassifier()\n",
" \n",
"classifier.fit(X_train, y_train)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'LogisticRegression': LogisticRegression(), 'KNeighborsClassifier': KNeighborsClassifier(), 'SVC': SVC(), 'DecisionTreeClassifier': DecisionTreeClassifier(), 'RandomForestClassifier': RandomForestClassifier(), 'GradientBoostingClassifier': GradientBoostingClassifier(), 'GaussianNB': GaussianNB(), 'AdaBoostClassifier': AdaBoostClassifier()}\n"
]
}
],
"source": [
"key = ['LogisticRegression','KNeighborsClassifier','SVC','DecisionTreeClassifier','RandomForestClassifier','GradientBoostingClassifier', 'GaussianNB','AdaBoostClassifier']\n",
"value = [LogisticRegression(),KNeighborsClassifier(),SVC(),DecisionTreeClassifier(),RandomForestClassifier(),GradientBoostingClassifier(),GaussianNB(),AdaBoostClassifier()]\n",
"models = dict(zip(key,value))\n",
"print(models)\n"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"LogisticRegression 0.9\n",
"KNeighborsClassifier 0.875\n",
"SVC 0.82\n",
"DecisionTreeClassifier 0.915\n",
"RandomForestClassifier 0.93\n",
"GradientBoostingClassifier 0.94\n",
"GaussianNB 0.835\n",
"AdaBoostClassifier 0.89\n"
]
}
],
"source": [
"predicted =[]\n",
"for name,algo in models.items():\n",
" model=algo\n",
" model.fit(X_train,y_train)\n",
" predict = model.predict(X_test)\n",
" acc = accuracy_score(y_test, predict)\n",
" predicted.append(acc)\n",
" print(name,acc)\n"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<AxesSubplot:>"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAEvCAYAAABYAjfRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAArIUlEQVR4nO3deZhcZZn+8e/NIltiEEFFZBFEEBACRJQRBQE33FBBdHDBjWFccBlcwYioI4rLDKAiw2jABRDBdRgUkUV2EgiBsKkoDupPYURW2cLz+6PeHg9td7o66aS7k+/nunJV1XvOec9z6gzOnSdvVaWqkCRJktSzwngXIEmSJE0kBmRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6VhrvArTsWHvttWujjTYa7zIkSZJGNGfOnFurap2hthmQNWY22mgjZs+ePd5lSJIkjSjJTcNtc4mFJEmS1GEHWWPm2pv/l+3fd8J4lyFJkpawOUe8frxLWKLsIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR3LREBOctcYzDEjyZEL2b5Rkn/sd/+2z2+SXJVkXpJzk2y4uHWOlSQHJFm2fwZHkiRpESwTAXksVNXsqjpwIbtsBPxfQO5j/wHPqaqtgXOAQxarSCA9i33fquqYqvJ3oSVJkgZZZgNykulJLm7d2+8meVQbf1obuyjJEUmubuO7JPlRe75zkrntzxVJpgKHA89qY+8ZtP+UJF/rdItfOURJFwHrtf3XSXJqksvan2d2xs9McnmSryS5KcnarXt9bZIvAZcD6yd5Xzt2XpKPtePXSPJfSa5McnWSfdr44Umuaft+to0dmuSgEd6rc5J8OsmlSW5I8qwlc7ckSZImjmU2IAMnAB9o3durgI+28a8BB1TVjsCCYY49CHh7VU0HngX8Ffgg8POqml5VXxi0/0eA26vqqe18PxtizhcA32vP/x34QlU9DXglcFwb/yjws6raDvgusEHn+M2AE6pq2/Z8U2AHYDqwfZJnt3P8vqq2qaqtgDOSrAW8HNiy1faJUbxXACtV1Q7AuweNS5IkLZOWyYCcZBqwZlWd24aOB56dZE1galVd2Ma/NcwUFwCfT3Jgm+fBEU65O/DFgRdVdVtn29lJ/tT2+VZn/6OTzAV+ADyydal3Ak5qc5wBdOe5qaoubs+f1/5cQa+jvDm9wHwVsHvr+j6rqm4H7gDuBY5L8grgnm7hw71XnV1Oa49z6C0zeZgk+yeZnWT2g/fcOfw7JEmSNEkskwF5IdLPTlV1OPAWYDXg4iSb9zFvDbPtOcCGwHzgsDa2ArBj60ZPr6r1qurOEeq7e9D5PtU5/klV9Z9VdQOwPb2g/KkkM1u43wE4FdgTOGOEaxnsvva4AFhp8MaqOraqZlTVjJVWnzrKqSVJkiaeZTIgt87pbZ01s68Dzm2d3TuTPKONv3qo45NsUlVXVdWngdn0OrR3AsMlwJ8A7+gc/6hB9fyV3hKF17clD4P3n96eng+8qo09D3jYPB0/Bt6UZErbd70kj0nyeOCeqvoG8Flgu7bPtKo6vdUwvTvRcO/VMOeVJEla5v1dR3CSWj3JzZ3XnwfeAByTZHXgRuCNbdubgf9Icje9b5a4fYj53p3kOfS6ptcA/w08BDyY5EpgFr3lDQM+AXyxfeBvAfAx/rY0AYCq+kOSE4G3Awe2/efRuwfnAQe0405sH647F/gDvWA+ZdBcP0nyFOCiJAB3Aa8FngQckeQh4AHgn+mF+u8nWZVe5/k9Q1zvcO+VJEnScidVw60MWDYlmVJVd7XnHwTWrap3jXNZACRZBVhQVQ8m2RH4cvug4KSwxuOeWJu/7mPjXYYkSVrC5hwx+X9KIcmcqpox1LZlpYM8Gi9K8iF6134TsN/4lvMwGwDfbt9zfD/w1nGuR5Ikabmz3AXkqjoZOHm86xhKVf0C2Ha865AkSVqeLZMf0pMkSZIWlQFZkiRJ6jAgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1LHcfQ+ylpynPOHRzF4GfllHkiQt3+wgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1OG3WGjM3P+H+fz2sKeOdxmSJKlPG8y8arxLmJDsIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR0TNiAnuavzfI8kv0iyQZJDk9yT5DFD7buQ+U5PsuYI+5yTZMYQ4/slOXqUl9CXJAcluS7J1UmuTPL6hdWyiOeYkeTI9nyVJD9NMjfJPkmOS7LFWJxHkiRpWTDhf2o6yW7AUcDzquq3SQBuBf4F+EC/81TVHkumwoVLr+BU1UNDbDsAeC6wQ1XdkWQasOdY11BVs4HZ7eW2wMpVNb29Pnk0cyVZsaoWjGF5kiRJE8qE7SADJHkW8B/Ai6rqV51NXwX2SbLWEMe8NsmlrUP6lSQrtvHfJFm7Pf9I69qemeTEJAd1pti7HX9DO/+A9ZOckeT6JB/tnO+9rft7dZJ3t7GNklyb5EvA5e3YWW2fq5K8px3+YeBtVXUHQFXdXlXHD3FNX04yO8n8JB/rjB+e5Jok85J8to3t3elGn9fGdknyo9Z1/wYwvb0/m3Q71Umel+SiJJcnOSXJlM57NzPJ+cDeI903SZKkyWwid5BXAb4P7FJV1w3adhe9kPwuoBtWnwLsAzyzqh5oAXVf4ITOPjOAV9LrpK5EL8DO6cy9UlXtkGSPNvfubXwHYCvgHuCyJP8FFPBG4OlAgEuSnAvcBmwGvLGq3pZke2C9qtqq1bBmkqnA1EHBfzgHV9WfW9g/K8nWwM3Ay4HNq6o6y0dmAs+vqt8NXlJSVX9K8hbgoKp6catl4H1ZGzgE2L2q7k7yAeC9wGHt8Huraqc+apUkSZrUJnIH+QHgQuDNw2w/EnhDkkd2xnYDtqcXYOe21xsPOm4n4PtV9dequhP44aDtp7XHOcBGnfEzq+p/q+qvbZ+d2p/vVtXdVXVXGx/oOt9UVRe35zcCGyc5KskLgDvoBepa2BvQ8aoklwNXAFsCW7Q57gWOS/IKesEd4AJgVpK3Aiv2OT/AM9q8F7T37g3Ahp3tQy7FSLJ/627P/vPdrryQJEmT30QOyA8BrwKeluTDgzdW1V+AbwFv6wwHOL6qprc/m1XVoYMOzQjnva89LuDhHfbBYbZGmOvuTq23AdsA5wBvB45ryyruTjI4wD+82OSJwEHAblW1NfBfwKpV9SC9rvap9NYtn9HOdQC9TvD6wNwkj17Y/N1T0ftLwMB7t0VVdf9ycvdQB1XVsVU1o6pmrLXGaPK4JEnSxDSRAzJVdQ/wYmDfJEN1kj8P/BN/C7JnAXsNfMNFkrWSbDjomPOBlyRZta2xfVGf5Ty3zbcavUB6AXAesGeS1ZOsQW/Jw88HH9iWL6xQVacCHwG2a5s+BXxxoAue5JFJ9h90+CPphdPbkzwWeGHbdwowrapOB94NTG/jm1TVJVU1k96HGdfv8/ouBp6Z5EltntWTPLnPYyVJkpYZE3kNMgBt7e0LgPOS3Dpo261Jvgu8p72+JskhwE+SrEBvmcbbgZs6x1yW5AfAlW18NnB7H6WcD3wdeBLwrfbNECSZBVza9jmuqq5IstGgY9cDvtZqAvhQe/wyMIXekpAHWr2fG3SNVya5AphPb6nGBW3TVOD7SVal1/0d+ODfEUk2bWNntevceaSLq6pbkuwHnJhklTZ8CHDDSMdKkiQtS1LV7zLYZUeSKVV1V5LV6XWB96+qy8e7rslu6/VWqx/905PGuwxJktSnDWZeNd4ljJskc6pqyN+cmPAd5CXk2PR+HGNVemuWDceSJEkCltOAXFX/ON41SJIkaWKa0B/SkyRJkpY2A7IkSZLUYUCWJEmSOgzIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpY7n8HmQtGY9Yd0s2mDl7vMuQJElaLHaQJUmSpA4DsiRJktRhQJYkSZI6DMiSJElShwFZkiRJ6vBbLDRmrvvTdTzzqGeOdxmSJE0qF7zzgvEuQYPYQZYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1GFAliRJkjoMyMuJJAcnmZ9kXpK5Sf47yacG7TM9ybXt+ZQkX0nyq3bceUmePj7VS5IkLT3+1PRyIMmOwIuB7arqviRrA1sCXwM+1Nn11cC32vPjgF8Dm1bVQ0k2Bp6yFMuWJEkaFwbk5cO6wK1VdR9AVd0KnJvkL0meXlWXtP1eBTw/ySbA04F9q+qhdsyNwI3jULskSdJS5RKL5cNPgPWT3JDkS0l2buMn0usak+QZwP9W1S/odZfnVtWC8SlXkiRp/BiQlwNVdRewPbA/cAtwcpL9gJOAvZKsQC8onzjauZPsn2R2ktkP3PXAGFYtSZI0PlxisZxo3eBzgHOSXAW8oapmJfkNsDPwSmDHtvt8YJskKwwssVjIvMcCxwJM2WBKLaHyJUmSlho7yMuBJJsl2bQzNB24qT0/EfgC8Kuquhmgqn4FzAY+liRtjk2TvGzpVS1JkjQ+DMjLhynA8UmuSTIP2AI4tG07hd6a45MGHfMW4HHAL1vH+T+A3y+dciVJksaPSyyWA1U1B/iHYbbdAqw8xPgdwFuXcGmSJEkTjh1kSZIkqcOALEmSJHUYkCVJkqQOA7IkSZLUYUCWJEmSOgzIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw1/S05jZ/DGbc8E7LxjvMiRJkhaLHWRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6/BYLjZk7r7+ec5+983iXIUmSJoCdzzt3vEtYZHaQJUmSpA4DsiRJktRhQJYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkjnEPyEkWJJmbZH6SK5O8N8ki1ZXksCS7L2T7AUlevwjzPr/VODfJXUmub89PWJQ6B819UJLrklzdrv/1bfycJDMWd/4214wkR7bnqyT5aat/nyTHJdliLM4jSZK0LJgIPzX916qaDpDkMcC3gGnAR0c7UVXNHGH7MYtSYFX9GPhxq/Ec4KCqmt3dJ8mKVbVgNPMmOQB4LrBDVd2RZBqw56LUuDCt1oF6twVWHnjPgZNHM9eiXKckSdJkMu4d5K6q+hOwP/CO9KyY5IgklyWZl+SfBvZN8v4kV7Wu6+FtbFaSvdrzw5Nc0477bBs7NMlB7fn0JBe37d9N8qg2fk6STye5NMkNSZ41XL1JfpNkZpLzgb2TPC/JRUkuT3JKkiltv+2TnJtkTpIfJ1m3TfFh4G1VdUe7/tur6vghzvPlJLNbl/1jnfGhrnHvTjf6vDa2S5Iftb+AfAOY3jrIm3Q71Qup/2HXOdr7KkmSNJlMhA7yw1TVjW2JxWOAlwG3V9XTkqwCXJDkJ8Dm9DqtT6+qe5Ks1Z2jvX45sHlVVZI1hzjVCcA7q+rcJIfR61i/u21bqap2SLJHGx922QZwb1XtlGRt4DRg96q6O8kHgPcm+RRwFPCyqrolyT7AJ5O8C5haVb/q4205uKr+nGRF4KwkWwM3D3ONM4HnV9XvBl93Vf0pyVvodcBf3N6rgfdsbeCQwfUDh3Wvs49aJUmSJrUJF5CbtMfnAVsPdIXpLb3YlF5g/VpV3QNQVX8edPwdwL3AcUn+C/jRwybvLWVYs6rObUPHA6d0djmtPc4BNhqh1oElCs8AtqAX4gEeAVwEbAZsBZzZxlcE/tCusUaYe8CrkuxP736t285zzTDXeAEwK8m3O9fRj+HqH3ydD9Pq2h/gsausMorTSZIkTUwTLiAn2RhYAPyJXoh8Z1sD3N3nBSwkXFbVg0l2AHYDXg28A9h1FGXc1x4XMPJ7dPdAWcCZVfWaQbU+FZhfVTsOPjDJ3Uk2rqobh5s8yROBg4CnVdVtSWYBqw53jVV1QJKnAy8C5iaZPkL9/3eqoeof4jofpqqOBY4F2Gzq1H4DvyRJ0oQ1odYgJ1kHOAY4uqqK3gfj/jnJym37k5OsAfwEeFOS1dv44CUWU4BpVXU6vWUT07vbq+p24LbO+uLXAeeyeC4GnpnkSa2G1ZM8GbgeWCfJjm185SRbtmM+BXwxySPbtke2jmzXI+mF09uTPBZ44cKuMckmVXVJ+8DircD6i1m/JEnScmUidJBXSzIXWBl4EPg68Pm27Th6SxwuT+/f/W8B9qyqM1pndHaS+4HT6X3gbcBU4PtJVqXXGX3PEOd9A3BMC9k3Am9cnIto64v3A05s66UBDqmqG9oSkSPb0o6VgH8D5gNfBqYAlyV5AHgA+Nygea9MckXb/0Z6SygWdo1HJNm0jZ0FXAnsvKj1AzeM6o2QJEma5NJr1EqLb7OpU+vYbbcb7zIkSdIEsPN5i/uP80tWkjlVNeRvTkyoJRaSJEnSeDMgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1GFAliRJkjoMyJIkSVKHAVmSJEnqmAg/Na1lxNTNNpvwv5ojSZI0EjvIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdfgtFhozf7r5do7+lx+OdxmSJGkSeMfnXjLeJQzLDrIkSZLUYUCWJEmSOgzIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktSxxANykgVJ5ia5OskPk6w5RvPul+ToMZrrN0muanXOTfIPYzHvEOeZnmSPQWMvTDI7ybVJrkvy2TZ+aJKDxvDcF3aeH5Fkfns8IMnrx+o8kiRJk93S+Knpv1bVdIAkxwNvBz65FM47Ws+pqltHc0CSlarqwVEcMh2YAZzejt8KOBp4UVVdl2QlYP/R1NCvquqG/n8C1qmq+0Y7zyJcsyRJ0qSytJdYXASsB5BkhyQXJrmiPW7WxvdLclqSM5L8IslnBg5O8sYkNyQ5F3hmZ3zDJGclmdceN2jjs5J8OcnZSW5MsnOSr7Zu7ayFFTrCnJ9Pcjbw6SSbtFrnJPl5ks3bfnu3rvmVSc5L8gjgMGCf1qXeB3g/8Mmqug6gqh6sqi8NUctbk1zW5jo1yepDnaONbZnk0naOeUk2beN3tccfAGsAlyTZp9upXsi1POyaR3G/JUmSJp2lFpCTrAjsBvygDV0HPLuqtgVmAv/a2X06sA/wVHqBcv0k6wIfoxeMnwts0dn/aOCEqtoa+CZwZGfbo4BdgfcAPwS+AGwJPDXJ9M5+Z7dQeUkfcz4Z2L2q/gU4FnhnVW0PHAQMBNyZwPOrahvgpVV1fxs7uaqmV9XJwFbAnBHfPDitqp7W5roWePNQ52hjBwD/3rr2M4CbuxNV1UtpXf1WQ9dw1zL4miVJkpZZS2OJxWpJ5gIb0QuDZ7bxacDxrcNZwMqdY86qqtsBklwDbAisDZxTVbe08ZPphTaAHYFXtOdfBz7TmeuHVVVJrgL+WFVXtePnt5rmtv0GL7FY2JynVNWCJFOAfwBOSTKwbZX2eAEwK8m3gdMW8v70Y6sknwDWBKYAP17IOS4CDk7yBHrB+hf9nGCEa4F2zUMctz9tWcijpq4zmmuSJEmakJZGB3lgDfKGwCPorUEG+DhwdlVtBbwEWLVzTHdt7AL+FuSrz3N29xuY66FB8z7E6P6C0J3z7va4AvCX1o0d+PMUgKo6ADgEWB+Ym+TRQ8w5H9i+j3PPAt5RVU+l10VfdbhzVNW36HWT/wr8OMmufV7fsNcy6JofpqqOraoZVTVjyurT+jyVJEnSxLXUlli0jvCBwEFJVqbXQf5d27xfH1NcAuyS5NHt+L072y4EXt2e7wucPwYljzhnVd0B/DrJ3gDp2aY936SqLqmqmcCt9ELsncDUzhRHAB9O8uR2zApJ3jtELVOBP7Tr3ndgcKhzJNkYuLGqjqS3nGXrfi52YdciSZK0PFmqH9KrqiuAK+kFz88An0pyAbBiH8f+ATiU3hKCnwKXdzYfCLwxyTzgdcC7xqDcfufcF3hzkivpdYRf1saPSO+r464GzqN33WcDWwx8SK+q5gHvBk5Mci1wNbDuEOf4CL2/IJxJb+32gKHOsQ9wdVvWsjlwwiiuebhrkSRJWm6kqt9VC9LCbfC4Tev9+35+vMuQJEmTwDs+95JxPX+SOVU1Y6ht/pKeJEmS1GFAliRJkjoMyJIkSVKHAVmSJEnqMCBLkiRJHQZkSZIkqcOALEmSJHUYkCVJkqSOlca7AC07HvOEaeP+pd+SJEmLyw6yJEmS1GFAliRJkjoMyJIkSVKHAVmSJEnqMCBLkiRJHQZkSZIkqcOvedOY+cOvf8UnX7vXeJchSZImsYO/8Z3xLsEOsiRJktRlQJYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1NFXQE7y2CTfSnJjkjlJLkry8kU9aZJDkxzUnh+WZPdFnGd6kj06r/dLckuSuUnmJ/lOktUXtc4+zvfSJB9cjPlWTnJ4kl8kuTrJpUle2Lb9JsnaY1T3/9WZZJ0klyS5IsmzkpyeZM2xOI8kSdKyYMSAnCTA94DzqmrjqtoeeDXwhEH7LdLPVlfVzKr66aIcC0wH9hg0dnJVTa+qLYH7gX0Wce4Rz1dVP6iqwxdjvo8D6wJbVdVWwEuAqYtV4RAG1bkbcF1VbVtVP6+qParqL/3OlWTFsa5PkiRpIumng7wrcH9VHTMwUFU3VdVRrWN7SpIfAj9JMiXJWUkuT3JVkpcNHJPk4CTXJ/kpsFlnfFaSvdrz7ZOc27rUP06ybhs/J8mnW4f1htb5fARwGLBP6xg/LAi3wL4GcFt7vWGrbV573GCE8b1bV/fKJOcNdb52/Ud3ruPIJBe2TvvANa2Q5Euto/2j1rHdq3W23wq8s6rua+/rH6vq24NvQJLvtfdkfpL929iK7ZxXt/f6PW38wCTXtOs5qY3tl+ToJNOBzwB7tGtYrdupTvLa9h7PTfKVgTCc5K7W6b8E2LGP/5uRJEmatPoJyFsCly9k+47AG6pqV+Be4OVVtR3wHOBz6RnoOm8LvAJ42uBJkqwMHAXs1brUXwU+2dllparaAXg38NGquh+Yyd86xie3/fZJMhf4HbAW8MM2fjRwQlVtDXwTOHKE8ZnA86tqG+ClCzlf17rATsCLgYGO7SuAjYCnAm/hbwHzScBvq+qOIeYZ7E3tPZkBHJjk0fS62etV1VZV9VTga23fDwLbtus5oDtJVc0ddA1/HdiW5Cn0uu3PrKrpwAJg37Z5DeDqqnp6VZ3fR72SJEmT1qg/pJfki62relkbOrOq/jywGfjXJPOAnwLrAY8FngV8t6ruaYHwB0NMvRmwFXBmC7iH8PBlHKe1xzn0AudwTm4B73HAVcD72viOwLfa86/TC7ILG78AmJXkrUC/ywq+V1UPVdU19K6bNt8pbfz/AWf3OVfXgUmuBC4G1gc2BW4ENk5yVJIXAANBex7wzSSvBR4cxTl2A7YHLmvv/27Axm3bAuDUoQ5Ksn+S2Ulm333vfaO8LEmSpImnn4A8H9hu4EVVvZ1eeFqnDd3d2XffNr59C6l/BFYdOHSE8wSY3zqb06vqqVX1vM72gfS1ABhxvXNVFb3u8bOH22Vh41V1AL2Qvj4wt3VtR9JNiBn0ONgvgQ2SLHTNcZJdgN2BHVs3+wpg1aq6DdgGOAd4O3BcO+RFwBfphd05o1gbHuD4zvu/WVUd2rbdW1ULhjqoqo6tqhlVNWONVVfp81SSJEkTVz8B+WfAqkn+uTM23DdDTAP+VFUPJHkOsGEbPw94eVvzOpXeh9EGux5YJ8mO8H/f8LDlCLXdycI/1LYT8Kv2/EJ6yzygF+TPX9h4kk2q6pKqmgncSi8oj3S+oZwPvLKtRX4ssAtAVd0D/CdwZFvfTJJ1W+e3axpwW1Xdk2Rz4Blt37WBFarqVOAjwHZJVgDWr6qzgfcDawJT+qzzLGCvJI9p86+VZMMRjpEkSVrm9NWJTbIn8IUk7wduodc1/gCw2qDdvwn8MMlsYC5wXZvj8iQnt7GbgJ8PcZ772wfbjkwyrdX2b/Q62MM5G/hgWxLwqTa2T5Kd6IX/m4H92viBwFeTvK9dwxtHGD8iyab0OqtnAVcCvx3ifCM5lV7H/WrgBuAS4Pa27RDgE8A1Se6l977OHHT8GcABbdnK9fSWWUBv+crXWigG+BC9pSDfaO9fgC9U1V+S4ZrYf1NV1yQ5hN6HLVcAHqDXmb6pz+uUJElaJqS3EkFLUpIpVXVXW6ZxKb0Pwv2/8a5rrK336EfV216423iXIUmSJrGDv/GdpXKeJHOqasZQ2xbpu4s1aj9K78c4HgF8fFkMx5IkScsKA/JSUFW7jHcNkiRJ6s+ov+ZNkiRJWpYZkCVJkqQOA7IkSZLUYUCWJEmSOgzIkiRJUocBWZIkSerwa940ZtZ94iZL7cu9JUmSlhQ7yJIkSVKHAVmSJEnqMCBLkiRJHQZkSZIkqcOALEmSJHUYkCVJkqQOv+ZNY+beP9zJtZ/82XiXIUnSMucpB+863iUsV+wgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1GFAliRJkjoMyJIkSVKHAVmSJEnqMCBLkiRJHQbkMZDksUm+leTGJHOSXJTk5Uv4nDOSHLkYx/8myamd13slmdWe75fkliRzk8xP8p0kq49B2ZIkSROeAXkxJQnwPeC8qtq4qrYHXg08YUmet6pmV9WBiznNjCRbDrPt5KqaXlVbAvcD+yzmuSRJkiYFA/Li2xW4v6qOGRioqpuq6qgkGyX5eZLL259/AEiyS5IfDeyf5Ogk+7Xnhye5Jsm8JJ9tY3snuTrJlUnOGzxHkh2SXJjkiva4WRvfL8lpSc5I8osknxlU+2eBDy/s4pKsBKwB3LZ4b5MkSdLksNJ4F7AM2BK4fJhtfwKeW1X3JtkUOBGYMdxESdYCXg5sXlWVZM22aSbw/Kr6XWes6zrg2VX1YJLdgX8FXtm2TQe2Be4Drk9yVFX9T9v2beBtSZ40xJz7JNkJWBe4AfjhcHVLkiQtS+wgj7EkX2yd3suAlYH/SHIVcAqwxQiH3wHcCxyX5BXAPW38AmBWkrcCKw5x3DTglCRXA1+gF9oHnFVVt1fVvcA1wIadbQuAI4APDTHnyVU1HXgccBXwvmGud/8ks5PM/vPdfxnh8iRJkiY+A/Limw9sN/Ciqt4O7AasA7wH+COwDb3O8SPabg/y8Pd+1Xbsg8AOwKnAnsAZbfwA4BBgfWBukkcPquHjwNlVtRXwkoH5mvs6zxfw9/9q8HXg2cAGQ11cVRW97vGzh9l+bFXNqKoZa62x5lC7SJIkTSoG5MX3M2DVJP/cGRv4xodpwB+q6iHgdfyt+3sTsEWSVZJMoxeoSTIFmFZVpwPvprc8giSbVNUlVTUTuJVeUO6aBvyuPd9vNMVX1QP0us7vXshuOwG/Gs28kiRJk5VrkBdTWyu8J/CFJO8HbgHuBj5Ab23yqUn2Bs5u41TV/yT5NjAP+AVwRZtuKvD9JKsCodeBBjiirWEOcBZwJbBzp4zPAMcneS+9wD5a/0mvQ901sAZ5BeBmRhm8JUmSJqv0/gVdWnxbrbdZnfK2L493GZIkLXOecvCu413CMifJnKoa8ssTXGIhSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR0GZEmSJKnDX9LTmFl13al+kbkkSZr07CBLkiRJHQZkSZIkqcOALEmSJHUYkCVJkqQOA7IkSZLUYUCWJEmSOvyaN42Z3//+9xx66KHjXYYkSRpDy+P/b7eDLEmSJHUYkCVJkqQOA7IkSZLUYUCWJEmSOgzIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdSwTATnJy5NUks2H2X5OkhkjzHFOkuuTzE1ybZL9x7jG/ZI8vvN65SSHJ/lFkquTXJrkhW3bb5KsPUbnfWmSD7bn6yS5JMkVSZ6V5PQka47FeSRJkpYVy0RABl4DnA+8ejHn2beqpgPPBD6d5BGLW1jHfsDjO68/DqwLbFVVWwEvAaaO4fkAqKofVNXh7eVuwHVVtW1V/byq9qiqv/Q7V5IVx7o+SZKkiWbSB+QkU+gF2jfTAnKS1ZKclGRekpOB1Tr7fznJ7CTzk3xsmGmnAHcDC9oxr0lyVev0froz19+NJ1kxyaw2dlWS9yTZC5gBfLN1qNcA3gq8s6ruA6iqP1bVt4e4vu8lmdPq3X+4c7TxA5Nc0677pDa2X5Kjk0wHPgPs0WpYrdupTvLa1sWem+QrA2E4yV1JDktyCbDjItwiSZKkSWWl8S5gDOwJnFFVNyT5c5LtgF2Ae6pq6yRbA5d39j+4qv7cAuBZSbauqnlt2zeT3AdsCry7qha0ZRGfBrYHbgN+kmRP4NJhxv8HWK91hUmyZlX9Jck7gIOqanar6bdVdUcf1/emVu9qwGVJTgU2GnyOtu8HgSdW1X2Dl05U1dwkM4EZVfWOdhzt8SnAPsAzq+qBJF8C9gVOANYArq6qmX3UKkmSNOlN+g4yveUVJ7XnJ7XXzwa+AdDC77zO/q9KcjlwBbAlsEVn275VtTWwAXBQkg2BpwHnVNUtVfUg8M02/3DjNwIbJzkqyQuAfkLwwhyY5ErgYmB9euF9uHPMoxfyXws8OIpz7EYv6F+WZG57vXHbtgA4dbgDk+zfOvKz77nnnlGcUpIkaWKa1B3kJI8GdgW2SlLAikDRC781xP5PBA4CnlZVtyWZBaw6eL+quqWF6KcD9w93+qEG27zbAM8H3g68CnjToN1+CWyQZGpV3bmQ69sF2B3YsaruSXIOsOpCzvEieiH9pcBHkmw53NxDXMvxVfWhIbbdW1ULhjuwqo4FjgV4/OMf/3fvuSRJ0mQz2TvIewEnVNWGVbVRVa0P/Jrekop9AZJsBWzd9n8kvbXFtyd5LPDCoSZNsjqwLfAr4BJg5yRrt2UZrwHOHW68reldoapOBT4CbNemvZP2Ibyqugf4T+DIgQ8CJlm3dX67pgG3tXC8OfCMtu/fnSPJCsD6VXU28H5gTXprqftxFrBXkse0+ddq3XNJkqTlzqTuINMLpYcPGjuVXrhdLck8YC699cJU1ZVJrgDm01umcMGgY7+Z5K/AKsCsqpoDkORDwNn0Oq2nV9X3hxtvnd2vtcAKMNCVnQUc0+bfETgE+ARwTZJ76QX3wet8zwAOaNdxPb1lFgDrDXGOFYFvJJnW6vlCW/s8wlsIVXVNkkPoraNeAXiAXmf6phEPliRJWsakyn8V19h4/OMfX/vvP6ZfHy1JksbZoYceOt4lLBFJ5lTVkL+TMdmXWEiSJEljyoAsSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR3+UIjGzIwZM2r27NnjXYYkSdKI/KEQSZIkqU8GZEmSJKnDgCxJkiR1uAZZYybJncD1412HFtvawK3jXYQWi/dw8vMeTn7ew4lvw6paZ6gNKy3tSrRMu364xe6aPJLM9j5Obt7Dyc97OPl5Dyc3l1hIkiRJHQZkSZIkqcOArLF07HgXoDHhfZz8vIeTn/dw8vMeTmJ+SE+SJEnqsIMsSZIkdRiQNWpJXpDk+iS/TPLBIbYnyZFt+7wk241HnRpeH/dw33bv5iW5MMk241GnhjfSPezs97QkC5LstTTr08j6uYdJdkkyN8n8JOcu7Rq1cH38b+m0JD9McmW7h28cjzo1ei6x0KgkWRG4AXgucDNwGfCaqrqms88ewDuBPYCnA/9eVU8fh3I1hD7v4T8A11bVbUleCBzqPZw4+rmHnf3OBO4FvlpV31natWpoff53uCZwIfCCqvptksdU1Z/Go179vT7v4YeBaVX1gSTr0PutgMdV1f3jUbP6ZwdZo7UD8MuqurH9B34S8LJB+7wMOKF6LgbWTLLu0i5UwxrxHlbVhVV1W3t5MfCEpVyjFq6f/w6h9xfVUwFD1cTTzz38R+C0qvotgOF4wunnHhYwNUmAKcCfgQeXbplaFAZkjdZ6wP90Xt/cxka7j8bPaO/Pm4H/XqIVabRGvIdJ1gNeDhyzFOtS//r57/DJwKOSnJNkTpLXL7Xq1I9+7uHRwFOA3wNXAe+qqoeWTnlaHP6SnkYrQ4wNXqfTzz4aP33fnyTPoReQd1qiFWm0+rmH/wZ8oKoW9JpXmmD6uYcrAdsDuwGrARclubiqbljSxakv/dzD5wNzgV2BTYAzk/y8qu5YwrVpMRmQNVo3A+t3Xj+B3t+MR7uPxk9f9yfJ1sBxwAur6n+XUm3qTz/3cAZwUgvHawN7JHmwqr63VCrUSPr939Jbq+pu4O4k5wHb0Fv3qvHXzz18I3B49T7w9cskvwY2By5dOiVqUbnEQqN1GbBpkicmeQTwauAHg/b5AfD69m0WzwBur6o/LO1CNawR72GSDYDTgNfZrZqQRryHVfXEqtqoqjYCvgO8zXA8ofTzv6XfB56VZKUkq9P70PO1S7lODa+fe/hbev8CQJLHApsBNy7VKrVI7CBrVKrqwSTvAH4MrEjvk/HzkxzQth8DnE7vGyx+CdxD72/QmiD6vIczgUcDX2odyAerasZ41ayH6/MeagLr5x5W1bVJzgDmAQ8Bx1XV1eNXtbr6/O/w48CsJFfRW5Lxgaq6ddyKVt/8mjdJkiSpwyUWkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6/j/5XMcmmFYm6AAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 720x360 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize = (10,5))\n",
"sns.barplot(x = predicted, y = key)\n"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"94.0\n"
]
}
],
"source": [
"# predict class labels\n",
"y_pred = classifier.predict(X_test)\n",
"\n",
"# score on test data (accuracy)\n",
"print(accuracy_score(y_test,y_pred)*100)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"predict = classifier.predict([[90, 1, 90, 1, 0, 3, 1, 1, 0, 3, 2, 1, 0, 7.5 ]])"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([1], dtype=int64)"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predict"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"predict = classifier.predict([[45, 1, 14, 0, 0, 2, 2, 0, 0, 1, 1, 1, 0, 6.5]])"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([1], dtype=int64)"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predict"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"predict1 = classifier.predict([[1,1,24,0,0,1,1,0,0,0,2,0,1,8]])"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([2], dtype=int64)"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predict1"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"predict2 = classifier.predict([[1, 1, 15, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 4.0]])"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([2], dtype=int64)"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predict2"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"pre = classifier.predict([[90,1,74,1,1,3,1,0,1,1,0,1,0,7.5]])"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0], dtype=int64)"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pre"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"p = classifier.predict([[15, 0, 15, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 6.0]])"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([2], dtype=int64)"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"p"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 997 entries, 0 to 996\n",
"Data columns (total 15 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Feeling 997 non-null int64 \n",
" 1 Gender 997 non-null int64 \n",
" 2 Age 997 non-null int64 \n",
" 3 Relationship_Status 997 non-null int64 \n",
" 4 Happy_With_Financial_State 997 non-null int64 \n",
" 5 Succeeded_To_Cope_up_with_Environment 997 non-null int64 \n",
" 6 Understanding_Family 997 non-null int64 \n",
" 7 Feeling_Pressure 997 non-null int64 \n",
" 8 Satisfied_with_Job_or_Studies 997 non-null int64 \n",
" 9 Happy_with_Living_Place 997 non-null int64 \n",
" 10 Inferiority_Complex 997 non-null int64 \n",
" 11 Satisfied_with_Today_Meal 997 non-null int64 \n",
" 12 Feeling_Sick 997 non-null int64 \n",
" 13 Sleeping_Time 997 non-null float64\n",
" 14 Output 997 non-null int64 \n",
"dtypes: float64(1), int64(14)\n",
"memory usage: 117.0 KB\n"
]
}
],
"source": [
"Data.info()"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"p3 = classifier.predict([[15,0,15,1,0,1,1,1,0,0,1,1,0,6.0]])"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([2], dtype=int64)"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"p3"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"p4 = classifier.predict([[90,1,90,1,0,3,1,1,0,3,2,1,0,7.5]])"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([1], dtype=int64)"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"p4"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: flask-ngrok in c:\\users\\dell\\anaconda3\\lib\\site-packages (0.0.25)\n",
"Requirement already satisfied: Flask>=0.8 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from flask-ngrok) (1.1.2)\n",
"Requirement already satisfied: requests in c:\\users\\dell\\anaconda3\\lib\\site-packages (from flask-ngrok) (2.24.0)\n",
"Requirement already satisfied: itsdangerous>=0.24 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from Flask>=0.8->flask-ngrok) (1.1.0)\n",
"Requirement already satisfied: click>=5.1 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from Flask>=0.8->flask-ngrok) (7.1.2)\n",
"Requirement already satisfied: Jinja2>=2.10.1 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from Flask>=0.8->flask-ngrok) (2.11.2)\n",
"Requirement already satisfied: Werkzeug>=0.15 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from Flask>=0.8->flask-ngrok) (1.0.1)\n",
"Requirement already satisfied: chardet<4,>=3.0.2 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from requests->flask-ngrok) (3.0.4)\n",
"Requirement already satisfied: idna<3,>=2.5 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from requests->flask-ngrok) (2.10)\n",
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from requests->flask-ngrok) (1.25.11)\n",
"Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from requests->flask-ngrok) (2020.6.20)\n",
"Requirement already satisfied: MarkupSafe>=0.23 in c:\\users\\dell\\anaconda3\\lib\\site-packages (from Jinja2>=2.10.1->Flask>=0.8->flask-ngrok) (1.1.1)\n"
]
}
],
"source": [
"!pip install flask-ngrok"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" * Serving Flask app \"__main__\" (lazy loading)\n",
" * Environment: production\n",
" WARNING: This is a development server. Do not use it in a production deployment.\n",
" Use a production WSGI server instead.\n",
" * Debug mode: off\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" * Running on http://b7c4-2402-d000-a400-32a-1cc7-cb9e-ae69-168c.ngrok.io\n",
" * Traffic stats available on http://127.0.0.1:4040\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"127.0.0.1 - - [22/Nov/2021 19:17:36] \"\u001b[37mGET /0/Female/25/Single/No/2/Bad/Yes/No/No/Yes/No/Yes/3.0 HTTP/1.1\u001b[0m\" 200 -\n"
]
}
],
"source": [
"from flask_ngrok import run_with_ngrok\n",
"from flask import Flask,jsonify\n",
"app=Flask(__name__)\n",
"run_with_ngrok(app)\n",
"@app.route(\"/<int:Feeling>/<Gender>/<int:Age>/<Relationship_Status>/<Happy_With_Financial_State>/<int:Succeeded_To_Cope_up_with_Environment>/<Understanding_Family>/<Feeling_Pressure>/<Satisfied_with_Job_or_Studies>/<Happy_with_Living_Place>/<Inferiority_Complex>/<Satisfied_with_Today_Meal>/<Feeling_Sick>/<float:Sleeping_Time>\")\n",
"def home(Feeling,Gender,Age,Relationship_Status,Happy_With_Financial_State,Succeeded_To_Cope_up_with_Environment,Understanding_Family,Feeling_Pressure,Satisfied_with_Job_or_Studies,Happy_with_Living_Place,Inferiority_Complex,Satisfied_with_Today_Meal,Feeling_Sick,Sleeping_Time):\n",
" p = []\n",
" p += [Feeling,Age,Succeeded_To_Cope_up_with_Environment,Sleeping_Time]\n",
" if Gender.casefold() == \"Male\":\n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" if Relationship_Status.casefold() == \"In a relationship\":\n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" if Happy_With_Financial_State.casefold() == \"Yes\":\n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" if Understanding_Family.casefold() == \"Good\":\n",
" p += [2]\n",
" elif Understanding_Family.casefold() == \"Normal\":\n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" if Feeling_Pressure.casefold() == \"Not applicable\":\n",
" p += [3]\n",
" elif Feeling_Pressure.casefold() == \"Yes\":\n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" if Satisfied_with_Job_or_Studies.casefold() == \"Not applicable\":\n",
" p += [3]\n",
" elif Satisfied_with_Job_or_Studies.casefold() == \"Yes\": \n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" if Happy_with_Living_Place.casefold() == \"Not applicable\": \n",
" p += [3]\n",
" elif Happy_with_Living_Place.casefold() == \"Yes\": \n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" if Inferiority_Complex.casefold() == \"Maybe\":\n",
" p += [2]\n",
" elif Inferiority_Complex.casefold() == \"Not applicable\":\n",
" p += [3]\n",
" elif Inferiority_Complex.casefold() == \"Yes\":\n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" if Satisfied_with_Today_Meal.casefold() == \"Neutral\":\n",
" p += [4] \n",
" elif Satisfied_with_Today_Meal.casefold() == \"Yes\":\n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" if Feeling_Sick.casefold() == \"Yes\":\n",
" p += [1]\n",
" else:\n",
" p += [0]\n",
" arr = np.array([p])\n",
" predict = classifier.predict(arr)\n",
" if predict == [2]:\n",
" result = {'result':'High Risk'}\n",
" elif predict == [1]:\n",
" result = {'result':'Intermediate Risk'}\n",
" else:\n",
" result = {'result':'Low Risk'}\n",
" \n",
" return jsonify(result)\n",
"app.run()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Feeling ,Gender,Age,Relationship_Status,Happy_With_Financial_State,Succeeded_To_Cope_up_with_Environment,Understanding_Family,Feeling_Pressure,Satisfied_with_Job_or_Studies,Happy_with_Living_Place,Inferiority_Complex,Satisfied_with_Today_Meal,Feeling_Sick,Sleeping_Time,Output
90,Male,90,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
90,Female,90,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
85,Male,85,Single,No,2,Normal,Not applicable,No,Yes,Yes,Yes,No,5.5,Intermediate Risk
85,Male,85,In a relationship,No,1,Good,Yes,No,No,Maybe,No,No,6.5,Intermediate Risk
85,Male,85,In a relationship,No,2,Normal,Yes,No,Yes,Maybe,Neutral,Yes,8,Intermediate Risk
85,Male,85,In a relationship,No,1,Normal,Yes,No,Not applicable,Maybe,Neutral,No,7,Intermediate Risk
85,Female,85,In a relationship,No,1,Good,Yes,No,No,Maybe,No,No,6.5,Intermediate Risk
85,Female,84,In a relationship,No,1,Normal,Yes,No,Not applicable,Maybe,Neutral,No,7,Intermediate Risk
80,Male,80,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,7,Intermediate Risk
90,Male,79,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
75,Male,75,Single,Yes,1,Normal,No,No,Yes,Not applicable,Yes,No,7,Intermediate Risk
75,Male,75,In a relationship,No,3,Good,No,No,No,No,Yes,Yes,7,Intermediate Risk
75,Male,75,Single,Yes,2,Good,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
75,Male,75,Single,Yes,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
75,Male,75,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
75,Male,75,In a relationship,No,3,Good,No,No,Yes,Maybe,Neutral,Yes,7,Intermediate Risk
75,Male,75,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6,Intermediate Risk
75,Male,75,In a relationship,Yes,3,Good,No,No,Yes,Maybe,Neutral,Yes,7,Low Risk
75,Male,75,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
65,Male,75,Single,Yes,2,Normal,No,No,Not applicable,Maybe,Yes,No,5,Intermediate Risk
60,Male,75,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,Yes,5,Intermediate Risk
55,Male,75,Single,Yes,1,Normal,No,No,No,Yes,Yes,No,5.5,Intermediate Risk
55,Male,75,Single,Yes,1,Good,No,No,Yes,Yes,Yes,No,7.5,Intermediate Risk
40,Male,75,Single,No,1,Good,Yes,No,Yes,Yes,Yes,No,6,Intermediate Risk
35,Male,75,Single,No,1,Normal,Yes,No,Yes,Maybe,No,No,6,Intermediate Risk
30,Male,75,Single,Yes,2,Normal,No,No,Not applicable,Yes,Neutral,Yes,6.5,Intermediate Risk
15,Male,75,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,Yes,4.5,High Risk
5,Male,75,Single,Yes,2,Normal,No,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
75,Female,75,In a relationship,No,3,Good,No,No,No,No,Yes,Yes,7,Intermediate Risk
75,Female,75,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
75,Female,75,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6,Intermediate Risk
55,Female,75,Single,Yes,1,Good,No,No,Yes,Yes,Yes,No,7.5,Intermediate Risk
30,Female,75,Single,Yes,2,Normal,No,No,Not applicable,Yes,Neutral,Yes,6.5,Intermediate Risk
90,Male,74,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
65,Male,74,Single,Yes,2,Normal,No,No,Not applicable,Maybe,Yes,No,5,Intermediate Risk
90,Female,73,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
90,Male,72,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
75,Male,72,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6,Intermediate Risk
35,Male,72,Single,No,1,Normal,Yes,No,Yes,Maybe,No,No,6,Intermediate Risk
75,Male,71,Single,Yes,2,Good,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
75,Male,71,Single,Yes,2,Good,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
75,Male,71,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
70,Male,71,In a relationship,No,1,Good,Yes,No,Not applicable,Maybe,Yes,No,7,Intermediate Risk
55,Male,71,Single,Yes,1,Good,No,No,Yes,Yes,Yes,No,7.5,Intermediate Risk
35,Male,71,Single,No,1,Normal,Yes,No,Yes,Maybe,No,No,6,Intermediate Risk
15,Male,71,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,Yes,4.5,High Risk
45,Female,71,Single,No,2,Good,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
90,Male,70,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
85,Male,70,Single,No,2,Normal,Not applicable,No,Yes,Yes,Yes,No,5.5,Intermediate Risk
75,Male,70,Single,Yes,2,Good,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
70,Male,70,In a relationship,No,1,Good,Yes,No,Not applicable,Maybe,Yes,No,7,Intermediate Risk
70,Male,70,In a relationship,No,3,Good,Yes,No,No,No,Yes,No,7.5,Intermediate Risk
70,Male,70,Single,Yes,1,Normal,Not applicable,Not applicable,No,Maybe,Neutral,No,6,Intermediate Risk
70,Male,70,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
65,Male,70,Single,No,2,Normal,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
55,Male,70,Single,Yes,1,Good,No,No,Yes,Yes,Yes,No,7.5,Intermediate Risk
45,Male,70,In a relationship,No,1,Normal,Yes,No,No,Yes,Neutral,No,6.5,Intermediate Risk
35,Male,70,Single,No,1,Normal,No,No,No,Maybe,Neutral,Yes,5.5,Intermediate Risk
30,Male,70,Single,Yes,2,Normal,No,No,Not applicable,Yes,Neutral,Yes,6.5,Intermediate Risk
85,Female,70,In a relationship,No,1,Good,Yes,No,No,Maybe,No,No,6.5,Intermediate Risk
70,Female,70,Single,Yes,2,Good,Yes,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
70,Female,70,In a relationship,No,3,Good,Yes,No,No,No,Yes,No,7.5,Intermediate Risk
65,Female,70,Single,No,2,Normal,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
55,Female,70,Single,No,2,Normal,Yes,No,Yes,Yes,No,No,6.5,Intermediate Risk
30,Female,70,Single,No,1,Normal,Yes,No,No,Yes,No,No,6.5,Intermediate Risk
65,Female,69,In a relationship,No,1,Good,Yes,No,No,Maybe,Neutral,No,8.5,Intermediate Risk
85,Male,68,In a relationship,No,1,Normal,Yes,No,Not applicable,Maybe,Neutral,No,7,Intermediate Risk
68,Male,68,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
65,Male,68,Single,Yes,2,Normal,No,No,Not applicable,Maybe,Yes,No,5,Intermediate Risk
60,Male,68,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,Yes,5,Intermediate Risk
30,Male,68,Single,Yes,2,Normal,No,No,Not applicable,Yes,Neutral,Yes,6.5,Intermediate Risk
5,Male,68,Single,Yes,2,Normal,No,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
68,Female,68,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
60,Female,68,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,Yes,5,Intermediate Risk
50,Female,68,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
67,Male,67,In a relationship,No,1,Good,Yes,No,Not applicable,Not applicable,Neutral,Yes,6.5,Intermediate Risk
65,Male,67,In a relationship,No,1,Good,Yes,No,No,Maybe,No,Yes,6,Intermediate Risk
70,Female,67,In a relationship,No,3,Good,Yes,No,No,No,Yes,No,7.5,Intermediate Risk
75,Male,66,Single,Yes,2,Good,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
65,Male,66,Single,No,2,Normal,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
55,Male,66,Single,Yes,1,Normal,No,No,No,Yes,Yes,No,5.5,Intermediate Risk
50,Male,66,Single,Yes,2,Good,Yes,No,No,Yes,No,No,6.5,Intermediate Risk
50,Male,66,Single,Yes,1,Normal,Yes,No,Yes,Yes,No,Yes,6,Intermediate Risk
35,Male,66,Single,No,1,Normal,Yes,No,Yes,Maybe,No,No,6,Intermediate Risk
10,Male,66,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,5,Intermediate Risk
1,Male,66,Single,No,1,Normal,Yes,No,No,Yes,No,Yes,5,Intermediate Risk
75,Female,66,Single,Yes,2,Good,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
65,Female,66,In a relationship,No,1,Good,Yes,No,No,Maybe,No,Yes,6,Intermediate Risk
65,Female,66,In a relationship,No,1,Good,Yes,No,No,Maybe,Neutral,No,8.5,Intermediate Risk
55,Female,66,Single,Yes,1,Normal,No,No,No,Yes,Yes,No,5.5,Intermediate Risk
55,Female,66,Single,Yes,1,Good,No,No,Yes,Yes,Yes,No,7.5,Intermediate Risk
85,Male,65,In a relationship,No,1,Good,Yes,No,No,Maybe,No,No,6.5,Intermediate Risk
85,Male,65,In a relationship,No,2,Normal,Yes,No,Yes,Maybe,Neutral,Yes,8,Intermediate Risk
80,Male,65,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,7,Intermediate Risk
75,Male,65,In a relationship,No,3,Good,No,No,Yes,Maybe,Neutral,Yes,7,Intermediate Risk
75,Male,65,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6,Intermediate Risk
75,Male,65,Single,Yes,2,Good,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
70,Male,65,Single,Yes,2,Good,Yes,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
65,Male,65,Single,No,1,Good,Yes,No,Yes,Maybe,Yes,No,6,Intermediate Risk
65,Male,65,Single,No,1,Good,Yes,No,No,Yes,Yes,No,6.5,Intermediate Risk
65,Male,65,In a relationship,No,1,Good,Yes,No,No,Maybe,No,Yes,6,Intermediate Risk
65,Male,65,Single,No,2,Normal,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
65,Male,65,In a relationship,No,1,Good,Yes,No,No,Maybe,Neutral,No,8.5,Intermediate Risk
60,Male,65,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
60,Male,65,In a relationship,No,1,Good,No,No,Yes,Yes,No,Yes,7,Intermediate Risk
50,Male,65,Single,Yes,2,Good,Yes,No,No,Yes,No,No,6.5,Intermediate Risk
50,Male,65,Single,Yes,1,Normal,Yes,No,Yes,Yes,No,Yes,6,High Risk
45,Male,65,Single,No,2,Good,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
35,Male,65,In a relationship,No,2,Good,Not applicable,No,No,Maybe,Yes,No,8,Low Risk
35,Male,65,In a relationship,No,1,Bad,Yes,No,No,Yes,No,Yes,6,High Risk
35,Male,65,Single,Yes,1,Normal,No,No,Yes,Maybe,No,No,6,Intermediate Risk
35,Male,65,Single,No,1,Normal,No,No,No,Maybe,Neutral,Yes,5.5,Intermediate Risk
30,Male,65,Single,No,1,Normal,No,No,No,Maybe,No,Yes,5,Intermediate Risk
30,Male,65,Single,No,1,Normal,Yes,No,No,Yes,No,No,6.5,High Risk
30,Male,65,Single,No,1,Good,Yes,No,Not applicable,Yes,Neutral,No,6,Intermediate Risk
10,Male,65,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,5,Intermediate Risk
75,Female,65,Single,Yes,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
75,Female,65,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6,Intermediate Risk
65,Female,65,Single,No,1,Good,Yes,No,No,Yes,Yes,No,6.5,Intermediate Risk
65,Female,65,Single,Yes,2,Normal,No,No,Not applicable,Maybe,Yes,No,5,Intermediate Risk
65,Female,65,In a relationship,No,1,Good,Yes,No,No,Maybe,No,Yes,6,Intermediate Risk
65,Female,65,Single,No,2,Normal,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
65,Female,65,In a relationship,No,1,Good,Yes,No,No,Maybe,Neutral,No,8.5,Intermediate Risk
55,Female,65,Single,No,2,Normal,Yes,No,Yes,Yes,No,No,6.5,Intermediate Risk
45,Female,65,Single,No,2,Normal,Yes,No,No,Yes,Yes,No,6.5,Intermediate Risk
15,Female,65,Single,No,1,Normal,No,No,Yes,Yes,No,Yes,3,Intermediate Risk
70,Male,64,In a relationship,No,3,Good,Yes,No,No,No,Yes,No,7.5,Intermediate Risk
67,Male,64,In a relationship,No,1,Good,Yes,No,Not applicable,Not applicable,Neutral,Yes,6.5,Intermediate Risk
65,Male,64,In a relationship,No,1,Good,Yes,No,No,Maybe,No,Yes,6,Intermediate Risk
85,Male,63,In a relationship,No,1,Normal,Yes,No,Not applicable,Maybe,Neutral,No,7,Intermediate Risk
75,Male,63,Single,Yes,2,Good,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
68,Male,63,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
67,Male,63,In a relationship,No,1,Good,Yes,No,Not applicable,Not applicable,Neutral,Yes,6.5,Intermediate Risk
55,Male,63,Single,Yes,1,Normal,No,No,No,Yes,Yes,No,5.5,Intermediate Risk
35,Male,63,Single,No,1,Normal,No,No,No,Maybe,Neutral,Yes,5.5,Intermediate Risk
65,Female,63,In a relationship,No,1,Good,Yes,No,No,Maybe,No,Yes,6,Intermediate Risk
15,Female,63,Single,No,1,Normal,No,No,Yes,Yes,No,Yes,3,High Risk
68,Male,62,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
67,Male,62,In a relationship,No,1,Good,Yes,No,Not applicable,Not applicable,Neutral,Yes,6.5,Intermediate Risk
1,Male,62,Single,No,1,Normal,Yes,No,No,Yes,No,Yes,5,High Risk
85,Female,62,In a relationship,No,1,Normal,Yes,No,Not applicable,Maybe,Neutral,No,7,Intermediate Risk
85,Male,61,In a relationship,No,1,Good,Yes,No,No,Maybe,No,No,6.5,Intermediate Risk
75,Male,61,Single,Yes,2,Good,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
70,Male,61,Single,Yes,1,Normal,Not applicable,Not applicable,No,Maybe,Neutral,No,6,Intermediate Risk
68,Male,61,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
67,Male,61,In a relationship,No,1,Good,Yes,No,Not applicable,Not applicable,Neutral,Yes,6.5,Intermediate Risk
65,Male,61,Single,No,2,Normal,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
60,Male,61,Single,No,1,Good,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
55,Male,61,Single,Yes,1,Normal,No,No,No,Yes,Yes,No,5.5,Intermediate Risk
55,Male,61,Single,Yes,3,Good,No,No,Yes,Yes,Yes,No,7.5,Intermediate Risk
55,Male,61,Single,No,2,Normal,Yes,No,Yes,Yes,No,No,6.5,Intermediate Risk
35,Male,61,Single,No,1,Normal,No,No,No,Maybe,Neutral,Yes,5.5,Intermediate Risk
10,Male,61,Single,No,1,Bad,Yes,No,No,Maybe,No,No,6.5,High Risk
1,Male,61,Single,No,1,Normal,Yes,No,No,Yes,No,Yes,5,High Risk
65,Female,61,Single,No,2,Normal,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
60,Female,61,Single,No,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
45,Female,61,Single,No,1,Normal,Yes,No,No,Maybe,Neutral,No,5.5,High Risk
35,Female,61,Single,No,1,Normal,No,No,No,Maybe,Neutral,Yes,5.5,Intermediate Risk
10,Female,61,Single,No,1,Bad,Yes,No,No,Maybe,No,No,6.5,High Risk
10,Female,61,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,5,High Risk
70,Male,60,In a relationship,No,3,Good,Yes,No,No,No,Yes,No,7.5,Intermediate Risk
60,Male,60,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
60,Male,60,Single,No,1,Good,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
60,Male,60,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,Yes,5,Intermediate Risk
60,Male,60,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
60,Male,60,In a relationship,No,1,Good,No,No,Yes,Yes,No,Yes,7,Intermediate Risk
60,Male,60,Single,No,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
60,Male,60,In a relationship,No,2,Normal,Yes,No,Yes,Not applicable,Neutral,No,8,Intermediate Risk
60,Male,60,In a relationship,No,2,Normal,No,No,Not applicable,No,Neutral,No,7,Intermediate Risk
60,Male,60,In a relationship,No,2,Normal,Not applicable,No,No,No,Neutral,Yes,7.5,Intermediate Risk
60,Female,60,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
60,Female,60,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
60,Female,60,In a relationship,Yes,1,Good,No,No,Yes,Yes,No,Yes,7,Intermediate Risk
60,Female,60,In a relationship,No,2,Normal,No,No,Not applicable,No,Neutral,No,7,Intermediate Risk
60,Female,60,In a relationship,No,2,Normal,Yes,No,Yes,Not applicable,Neutral,No,8,Intermediate Risk
60,Female,60,In a relationship,No,2,Normal,Not applicable,No,No,No,Neutral,Yes,7.5,Intermediate Risk
75,Male,59,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6,Intermediate Risk
60,Male,59,In a relationship,No,2,Normal,Yes,No,Yes,Not applicable,Neutral,No,8,Intermediate Risk
55,Male,59,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,7,Intermediate Risk
55,Male,59,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
45,Male,59,In a relationship,No,2,Normal,Yes,No,No,Yes,Yes,No,7,Intermediate Risk
35,Male,59,In a relationship,No,1,Bad,Yes,No,No,Yes,No,Yes,6,High Risk
30,Male,59,Single,No,1,Normal,No,No,No,Maybe,No,Yes,5,Intermediate Risk
55,Female,59,In a relationship,No,3,Normal,Yes,No,No,No,Yes,No,7,Intermediate Risk
85,Male,58,In a relationship,No,1,Good,Yes,No,No,Maybe,No,No,6.5,Intermediate Risk
55,Male,58,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
35,Male,58,Single,Yes,1,Normal,Yes,No,Yes,Yes,Yes,Yes,6,Intermediate Risk
75,Male,57,Single,Yes,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
67,Male,57,In a relationship,No,1,Good,Yes,No,Not applicable,Not applicable,Neutral,Yes,6.5,Intermediate Risk
65,Male,57,Single,Yes,2,Normal,No,No,Not applicable,Maybe,Yes,No,5,Intermediate Risk
55,Male,57,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,7,Intermediate Risk
50,Male,57,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
35,Male,57,Single,Yes,1,Normal,Yes,No,Yes,Yes,Yes,Yes,6,Intermediate Risk
1,Male,57,Single,No,1,Normal,Yes,No,No,Yes,No,Yes,5,High Risk
60,Female,57,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,Yes,5,Intermediate Risk
55,Female,57,Single,Yes,1,Good,No,No,Yes,Yes,Yes,No,7.5,Intermediate Risk
35,Female,57,In a relationship,No,1,Normal,Yes,No,No,Maybe,Yes,No,8,Intermediate Risk
67,Male,56,In a relationship,No,1,Good,Yes,No,Not applicable,Not applicable,Neutral,Yes,6.5,Intermediate Risk
60,Male,56,In a relationship,No,1,Good,No,No,Yes,Yes,No,Yes,7,Intermediate Risk
55,Male,56,Single,No,2,Normal,Yes,No,Yes,Yes,No,No,6.5,Intermediate Risk
35,Male,56,Single,No,1,Normal,Yes,No,Yes,Maybe,No,No,6,Intermediate Risk
85,Male,55,In a relationship,Yes,3,Good,Not applicable,Yes,Yes,No,Yes,No,8,Low Risk
85,Male,55,In a relationship,No,2,Good,No,Not applicable,Yes,Not applicable,Yes,No,8,Low Risk
85,Male,55,In a relationship,No,1,Normal,Yes,No,Not applicable,Maybe,Neutral,No,7,Intermediate Risk
85,Male,55,In a relationship,No,2,Normal,Yes,No,Yes,Maybe,Neutral,Yes,8,Intermediate Risk
80,Male,55,In a relationship,No,4,Normal,Not applicable,Yes,Not applicable,Maybe,Yes,No,8.5,Low Risk
75,Male,55,In a relationship,No,3,Good,No,No,No,No,Yes,Yes,7,Low Risk
75,Male,55,Single,Yes,2,Good,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
70,Male,55,Single,Yes,1,Normal,Not applicable,Not applicable,No,Maybe,Neutral,No,6,Intermediate Risk
65,Male,55,Single,No,1,Good,Yes,No,Yes,Maybe,Yes,No,6,Intermediate Risk
65,Male,55,In a relationship,No,1,Good,Yes,No,No,Maybe,No,Yes,6,Intermediate Risk
60,Male,55,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,Yes,5,Intermediate Risk
60,Male,55,In a relationship,No,1,Good,No,No,Yes,Yes,No,Yes,7,Intermediate Risk
55,Male,55,Single,Yes,3,Normal,No,No,No,Yes,Yes,No,5.5,Low Risk
55,Male,55,Single,No,1,Normal,Yes,No,Yes,Maybe,Yes,No,6.5,Intermediate Risk
55,Male,55,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,6.5,Intermediate Risk
55,Male,55,Single,Yes,1,Good,No,No,Yes,Yes,Yes,No,7.5,Low Risk
55,Male,55,In a relationship,No,3,Normal,Yes,No,No,No,Yes,No,7,Intermediate Risk
55,Male,55,Single,Yes,1,Normal,No,No,No,Yes,Yes,No,5.5,Intermediate Risk
55,Male,55,Single,No,2,Normal,Yes,No,Yes,Yes,No,No,6.5,Intermediate Risk
55,Male,55,Single,Yes,2,Normal,Yes,No,Yes,Maybe,No,No,6,Intermediate Risk
55,Male,55,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,7,Intermediate Risk
55,Male,55,Single,Yes,3,Good,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
55,Male,55,In a relationship,No,2,Normal,Yes,No,No,Yes,Neutral,No,6,Intermediate Risk
55,Male,55,In a relationship,No,1,Good,No,No,No,Yes,Neutral,No,6,Intermediate Risk
55,Male,55,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
55,Male,55,In a relationship,No,2,Good,No,Yes,Yes,Yes,Neutral,No,6,Low Risk
50,Male,55,Single,Yes,2,Good,Yes,No,No,Yes,No,No,6.5,Intermediate Risk
45,Male,55,In a relationship,No,2,Good,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
45,Male,55,Single,No,1,Normal,Yes,No,No,Maybe,Neutral,No,5.5,Intermediate Risk
40,Male,55,Single,No,1,Normal,No,No,Yes,Yes,Neutral,No,7,Intermediate Risk
35,Male,55,In a relationship,No,1,Normal,Yes,No,No,Maybe,Yes,No,8,Intermediate Risk
35,Male,55,Single,Yes,1,Normal,Yes,No,Yes,Yes,Yes,Yes,6,Intermediate Risk
35,Male,55,Single,No,1,Bad,Not applicable,No,No,Yes,Neutral,No,6,Intermediate Risk
30,Male,55,Single,No,1,Normal,No,No,No,Maybe,No,Yes,5,Intermediate Risk
15,Male,55,Single,No,1,Normal,No,No,Yes,Yes,No,Yes,3,Intermediate Risk
10,Male,55,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,5,Intermediate Risk
1,Male,55,Single,No,1,Normal,Yes,No,No,Yes,No,Yes,5,Intermediate Risk
65,Female,55,Single,No,1,Good,Yes,No,No,Yes,Yes,No,6.5,Intermediate Risk
65,Female,55,Single,No,1,Good,Yes,No,Yes,Maybe,Yes,No,6,Intermediate Risk
55,Female,55,Single,Yes,1,Good,No,No,Yes,Yes,Yes,No,7.5,Intermediate Risk
55,Female,55,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,6.5,Intermediate Risk
55,Female,55,Single,Yes,1,Normal,No,No,No,Yes,Yes,No,5.5,Intermediate Risk
55,Female,55,In a relationship,No,3,Normal,Yes,No,No,No,Yes,No,7,Intermediate Risk
55,Female,55,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,7,Intermediate Risk
55,Female,55,In a relationship,Yes,2,Good,No,No,No,Yes,Neutral,No,6,Low Risk
55,Female,55,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
55,Female,55,In a relationship,No,1,Good,No,No,No,Yes,Neutral,No,6,Intermediate Risk
45,Female,55,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
45,Female,55,Single,No,1,Normal,Yes,No,No,Maybe,Neutral,No,5.5,Intermediate Risk
60,Male,54,In a relationship,No,2,Normal,No,No,Not applicable,No,Neutral,No,7,Intermediate Risk
55,Male,54,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,7,Intermediate Risk
50,Male,54,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Neutral,Yes,6,Intermediate Risk
45,Male,54,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
40,Male,54,Single,No,1,Normal,No,No,Yes,Yes,Neutral,No,7,Intermediate Risk
15,Male,54,Single,No,1,Normal,No,No,Yes,Yes,No,Yes,3,Intermediate Risk
1,Male,54,Single,No,1,Bad,Not applicable,No,No,Yes,No,Yes,4,Intermediate Risk
85,Male,53,In a relationship,No,2,Normal,Yes,No,Yes,Maybe,Neutral,Yes,8,Intermediate Risk
70,Male,53,Single,Yes,1,Normal,Not applicable,Not applicable,No,Maybe,Neutral,No,6,Intermediate Risk
65,Male,53,Single,No,1,Good,Yes,No,No,Yes,Yes,No,6.5,Intermediate Risk
60,Male,53,In a relationship,No,1,Good,No,No,Yes,Yes,No,Yes,7,Intermediate Risk
55,Male,53,In a relationship,No,1,Good,No,No,No,Yes,Neutral,No,6,Intermediate Risk
50,Male,53,Single,Yes,1,Normal,Yes,No,Yes,Yes,No,Yes,6,High Risk
45,Male,53,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
45,Male,53,Single,No,1,Normal,Yes,No,No,Maybe,Neutral,No,5.5,Intermediate Risk
35,Male,53,Single,No,1,Bad,Not applicable,No,No,Yes,Neutral,No,6,Intermediate Risk
35,Male,53,Single,No,1,Bad,Yes,No,No,Yes,Neutral,No,6,High Risk
30,Male,53,Single,No,1,Normal,Yes,No,No,Maybe,No,Yes,5,Intermediate Risk
30,Male,53,Single,No,1,Good,Yes,No,Not applicable,Yes,Neutral,No,6,Intermediate Risk
10,Male,53,Single,No,1,Bad,Yes,No,No,Maybe,No,No,6.5,High Risk
1,Male,53,Single,No,1,Normal,Yes,No,No,Yes,No,Yes,5,High Risk
55,Female,53,Single,Yes,1,Normal,No,No,No,Yes,Yes,No,5.5,Intermediate Risk
55,Female,53,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
45,Female,53,Single,No,1,Normal,Yes,No,No,Maybe,Neutral,No,5.5,Intermediate Risk
40,Female,53,Single,No,1,Normal,Yes,No,Yes,Yes,Yes,No,6,Intermediate Risk
35,Female,53,In a relationship,No,1,Bad,Yes,No,No,Yes,No,Yes,6,High Risk
85,Male,52,Single,Yes,2,Good,No,Not applicable,Yes,Not applicable,Yes,No,8,Low Risk
85,Male,52,In a relationship,No,2,Normal,Yes,No,Yes,Maybe,Neutral,Yes,8,Intermediate Risk
85,Male,52,In a relationship,No,1,Normal,Yes,No,Not applicable,Maybe,Neutral,No,7,Intermediate Risk
80,Male,52,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,7,Intermediate Risk
75,Male,52,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6,Intermediate Risk
70,Male,52,In a relationship,No,1,Good,Yes,No,Not applicable,Maybe,Yes,No,7,Intermediate Risk
65,Male,52,Single,No,1,Good,Yes,No,Yes,Maybe,Yes,No,6,Intermediate Risk
55,Male,52,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
50,Male,52,In a relationship,No,2,Normal,No,No,No,Yes,Yes,No,7,Intermediate Risk
50,Male,52,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Neutral,Yes,6,Intermediate Risk
45,Male,52,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
45,Male,52,Single,No,1,Normal,Yes,No,No,Maybe,Neutral,No,5.5,Intermediate Risk
45,Male,52,In a relationship,No,1,Normal,Yes,No,No,Yes,Neutral,No,6.5,Intermediate Risk
80,Female,52,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,7,Intermediate Risk
60,Female,52,In a relationship,No,2,Normal,Yes,No,Yes,Not applicable,Neutral,No,8,Intermediate Risk
75,Male,51,Single,Yes,1,Normal,No,No,Yes,Not applicable,Yes,No,7,Intermediate Risk
75,Male,51,Single,Yes,3,Normal,No,No,Yes,Not applicable,Yes,No,7,Low Risk
65,Male,51,Single,No,1,Good,Yes,No,No,Yes,Yes,No,6.5,Intermediate Risk
65,Male,51,Single,No,1,Good,Yes,No,Yes,Maybe,Yes,No,6,Intermediate Risk
55,Male,51,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,7,Intermediate Risk
50,Male,51,Single,Yes,2,Good,Yes,No,No,Yes,No,No,6.5,Intermediate Risk
50,Male,51,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Neutral,Yes,6,Intermediate Risk
50,Male,51,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Neutral,Yes,6,Intermediate Risk
45,Male,51,Single,No,1,Bad,No,Not applicable,No,No,No,No,6,Intermediate Risk
45,Male,51,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
35,Male,51,Single,No,1,Normal,Yes,No,Yes,Yes,Neutral,No,6,Intermediate Risk
30,Male,51,Single,No,1,Normal,Yes,No,No,Yes,No,No,6.5,Intermediate Risk
1,Male,51,Single,No,1,Normal,Yes,No,No,Yes,No,Yes,5,High Risk
85,Female,51,Single,No,1,Good,No,Not applicable,Yes,Not applicable,Yes,No,8,Intermediate Risk
50,Female,51,Single,Yes,2,Good,Yes,No,No,Yes,No,No,6.5,Intermediate Risk
40,Female,51,Single,No,1,Normal,Yes,No,Yes,No,Neutral,No,6,Intermediate Risk
30,Female,51,Single,No,1,Normal,No,No,No,Maybe,No,Yes,5,Intermediate Risk
70,Male,50,In a relationship,No,1,Good,Yes,No,Not applicable,Maybe,Yes,No,7,Intermediate Risk
70,Male,50,In a relationship,No,3,Good,Yes,No,No,No,Yes,No,7.5,Intermediate Risk
65,Male,50,In a relationship,No,1,Good,Yes,No,No,Maybe,Neutral,No,8.5,Intermediate Risk
60,Male,50,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
55,Male,50,In a relationship,No,2,Normal,Yes,No,No,Yes,Neutral,No,6,Intermediate Risk
55,Male,50,Single,Yes,1,Good,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
50,Male,50,Single,Yes,2,Good,Yes,No,No,Yes,No,No,6.5,Intermediate Risk
50,Male,50,Single,Yes,1,Normal,Yes,No,Yes,Yes,No,Yes,6,High Risk
50,Male,50,Single,No,2,Normal,No,No,No,Maybe,No,No,5,Intermediate Risk
50,Male,50,Single,Yes,2,Good,Yes,No,Yes,Maybe,Neutral,No,7,Intermediate Risk
50,Male,50,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
50,Male,50,Single,No,1,Normal,Yes,No,Yes,Not applicable,Neutral,No,7,Intermediate Risk
50,Male,50,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Neutral,Yes,6,Intermediate Risk
45,Male,50,In a relationship,No,2,Normal,Yes,No,No,Yes,Yes,No,7,Intermediate Risk
45,Male,50,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
30,Male,50,Single,No,1,Normal,No,No,No,Maybe,No,Yes,5,Intermediate Risk
30,Male,50,Single,No,1,Normal,Yes,No,No,Yes,No,No,6.5,High Risk
15,Male,50,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,6,High Risk
55,Female,50,Single,No,1,Normal,Yes,No,Yes,Maybe,Yes,No,6.5,Intermediate Risk
50,Female,50,Single,Yes,2,Good,Yes,No,No,Yes,No,No,6.5,Intermediate Risk
50,Female,50,Single,No,2,Normal,No,No,No,Maybe,No,No,5,Intermediate Risk
50,Female,50,Single,Yes,1,Normal,Yes,No,Yes,Yes,No,Yes,6,High Risk
50,Female,50,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Neutral,Yes,6,Intermediate Risk
45,Female,50,Single,No,2,Normal,Yes,No,No,Yes,Yes,No,6.5,Intermediate Risk
75,Male,49,Single,Yes,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
65,Male,49,Single,No,2,Normal,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
60,Male,49,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,Yes,5,Intermediate Risk
60,Male,49,In a relationship,No,1,Good,No,No,Yes,Yes,No,Yes,7,Intermediate Risk
55,Male,49,Single,Yes,2,Normal,Yes,No,Yes,Maybe,No,No,6,Intermediate Risk
55,Male,49,In a relationship,No,2,Normal,Yes,No,No,Yes,Neutral,No,6,Intermediate Risk
50,Male,49,Single,No,2,Normal,No,No,No,Maybe,No,No,5,Intermediate Risk
50,Male,49,Single,Yes,4,Good,Yes,No,Yes,Maybe,Neutral,No,7,Low Risk
50,Male,49,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
45,Male,49,In a relationship,No,2,Normal,Yes,No,No,Yes,Yes,No,7,Intermediate Risk
45,Male,49,In a relationship,No,2,Good,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
40,Male,49,Single,No,1,Normal,Yes,No,Yes,No,Neutral,No,6,Intermediate Risk
35,Male,49,Single,Yes,1,Normal,Yes,No,Yes,Yes,Yes,Yes,6,Intermediate Risk
35,Male,49,Single,No,1,Bad,Not applicable,No,No,Yes,Neutral,No,6,Intermediate Risk
30,Male,49,Single,No,1,Normal,No,No,No,Maybe,No,Yes,5,Intermediate Risk
15,Male,49,Single,No,1,Normal,No,No,Yes,Yes,No,Yes,3,Intermediate Risk
10,Male,49,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,5,Intermediate Risk
5,Male,49,Single,Yes,2,Normal,No,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
75,Female,49,Single,Yes,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
35,Female,49,Single,Yes,1,Normal,Yes,No,Yes,Yes,Yes,Yes,6,Intermediate Risk
35,Female,49,Single,No,1,Normal,No,No,No,Maybe,Neutral,Yes,5.5,Intermediate Risk
10,Female,49,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,5,Intermediate Risk
68,Male,48,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
65,Male,48,Single,No,1,Good,Yes,No,Yes,Maybe,Yes,No,6,Intermediate Risk
65,Male,48,Single,No,1,Good,Yes,No,No,Yes,Yes,No,6.5,Intermediate Risk
65,Male,48,Single,Yes,2,Normal,No,No,Not applicable,Maybe,Yes,No,5,Intermediate Risk
60,Male,48,In a relationship,No,2,Normal,No,No,Not applicable,No,Neutral,No,7,Intermediate Risk
60,Male,48,Single,No,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
60,Male,48,In a relationship,No,2,Normal,Not applicable,No,No,No,Neutral,Yes,7.5,Intermediate Risk
55,Male,48,Single,Yes,2,Normal,Yes,No,Yes,Maybe,No,No,6,Intermediate Risk
55,Male,48,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
50,Male,48,Single,No,2,Normal,No,No,No,Maybe,No,No,5,Intermediate Risk
45,Male,48,Single,No,1,Normal,Yes,No,No,Maybe,Neutral,No,5.5,Intermediate Risk
45,Male,48,In a relationship,No,1,Normal,Yes,No,No,Yes,Neutral,No,6.5,Intermediate Risk
45,Male,48,In a relationship,No,2,Good,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
40,Male,48,Single,No,1,Normal,Yes,No,Yes,Yes,Yes,No,6,Intermediate Risk
40,Male,48,Single,No,1,Normal,Yes,No,Yes,No,Neutral,No,6,Intermediate Risk
35,Male,48,Single,No,1,Bad,Not applicable,No,No,Yes,Neutral,No,6,Intermediate Risk
15,Male,48,Single,No,1,Normal,No,No,Yes,Yes,No,Yes,3,Intermediate Risk
10,Male,48,Single,No,1,Bad,Yes,No,No,Maybe,No,No,6.5,High Risk
1,Male,48,Single,No,1,Normal,Yes,No,No,Yes,No,Yes,5,High Risk
65,Female,48,Single,No,1,Good,Yes,No,No,Yes,Yes,No,6.5,Intermediate Risk
55,Female,48,In a relationship,No,3,Normal,Yes,No,No,No,Yes,No,7,Intermediate Risk
40,Female,48,Single,No,1,Good,Yes,No,Yes,Yes,Yes,No,6,Intermediate Risk
40,Female,48,Single,No,1,Normal,Yes,No,Yes,Yes,Yes,No,6,Intermediate Risk
70,Male,47,In a relationship,No,3,Good,Yes,No,No,No,Yes,No,7.5,Intermediate Risk
55,Male,47,In a relationship,No,3,Normal,Yes,No,No,No,Yes,No,7,Intermediate Risk
55,Male,47,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,7,Intermediate Risk
55,Male,47,In a relationship,No,2,Normal,Yes,No,No,Yes,Neutral,No,6,Intermediate Risk
45,Male,47,In a relationship,No,1,Normal,Yes,No,No,Yes,Neutral,No,6.5,Intermediate Risk
35,Male,47,Single,Yes,1,Normal,No,No,Yes,Maybe,Yes,No,6,Intermediate Risk
35,Male,47,Single,Yes,1,Normal,No,No,Yes,Maybe,No,No,6,Intermediate Risk
65,Female,47,In a relationship,No,1,Good,Yes,No,No,Maybe,No,Yes,6,Intermediate Risk
70,Male,46,In a relationship,No,1,Good,Yes,No,Not applicable,Maybe,Yes,No,7,Intermediate Risk
60,Male,46,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
60,Male,46,In a relationship,No,2,Normal,Yes,No,Yes,Not applicable,Neutral,No,8,Intermediate Risk
55,Male,46,Single,No,1,Normal,Yes,No,Yes,Maybe,Yes,No,6.5,Intermediate Risk
55,Male,46,Single,Yes,2,Normal,Yes,No,Yes,Maybe,No,No,6,Intermediate Risk
45,Male,46,Single,No,1,Bad,No,Not applicable,No,No,No,No,6,Intermediate Risk
45,Male,46,In a relationship,No,1,Normal,Yes,No,No,Yes,Neutral,No,6.5,Intermediate Risk
40,Male,46,Single,No,1,Good,Yes,No,Yes,Yes,Yes,No,6,Intermediate Risk
30,Male,46,Single,No,1,Good,Yes,No,Not applicable,Yes,Neutral,No,6,Intermediate Risk
5,Male,46,Single,Yes,2,Normal,No,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
75,Female,46,In a relationship,Yes,3,Good,No,No,No,No,Yes,Yes,7,Low Risk
70,Female,46,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
60,Female,46,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
60,Female,46,In a relationship,No,2,Normal,No,No,Not applicable,No,Neutral,No,7,Intermediate Risk
55,Female,46,Single,Yes,1,Normal,No,No,No,Yes,Yes,No,5.5,Intermediate Risk
40,Female,46,Single,No,1,Good,Yes,No,Yes,Yes,Yes,No,6,Intermediate Risk
30,Female,46,Single,No,1,Good,Yes,No,Not applicable,Yes,Neutral,No,6,Intermediate Risk
90,Male,45,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
85,Male,45,Single,No,2,Normal,Not applicable,No,Yes,Yes,Yes,No,5.5,Intermediate Risk
85,Male,45,In a relationship,No,2,Normal,Yes,No,Yes,Maybe,Neutral,Yes,8,Intermediate Risk
75,Male,45,In a relationship,No,3,Good,No,No,No,No,Yes,Yes,7,Low Risk
75,Male,45,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
65,Male,45,Single,No,1,Good,Yes,No,Yes,Maybe,Yes,No,6,Intermediate Risk
60,Male,45,In a relationship,No,2,Normal,Not applicable,No,No,No,Neutral,Yes,7.5,Intermediate Risk
60,Male,45,In a relationship,No,2,Normal,Yes,No,Yes,Not applicable,Neutral,No,8,Intermediate Risk
60,Male,45,In a relationship,No,2,Normal,No,No,Not applicable,No,Neutral,No,7,Intermediate Risk
55,Male,45,In a relationship,No,3,Normal,Yes,No,No,No,Yes,No,7,Intermediate Risk
55,Male,45,Single,Yes,2,Normal,Yes,No,Yes,Maybe,No,No,6,Intermediate Risk
55,Male,45,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
55,Male,45,In a relationship,No,1,Good,No,No,No,Yes,Neutral,No,6,Intermediate Risk
55,Male,45,In a relationship,No,2,Normal,Yes,No,No,Yes,Neutral,No,6,Intermediate Risk
55,Male,45,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,7,Intermediate Risk
50,Male,45,Single,Yes,2,Good,Yes,No,No,Yes,No,No,6.5,Intermediate Risk
50,Male,45,Single,Yes,1,Normal,Yes,No,Yes,Yes,No,Yes,6,High Risk
50,Male,45,Single,Yes,2,Good,Yes,No,Yes,Maybe,Neutral,No,7,Intermediate Risk
45,Male,45,In a relationship,No,2,Normal,Yes,No,No,Yes,Yes,No,7,Intermediate Risk
45,Male,45,Single,No,2,Normal,Yes,No,No,Yes,Yes,No,6.5,Intermediate Risk
45,Male,45,Single,No,2,Good,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
45,Male,45,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
45,Male,45,Single,No,1,Bad,No,Not applicable,No,No,No,No,6,Intermediate Risk
45,Male,45,Single,No,2,Bad,No,Not applicable,No,No,No,No,6,Intermediate Risk
45,Male,45,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
45,Male,45,Single,No,1,Normal,Yes,No,No,Maybe,Neutral,No,5.5,Intermediate Risk
45,Male,45,In a relationship,No,2,Good,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
45,Male,45,In a relationship,No,1,Normal,Yes,No,No,Yes,Neutral,No,6.5,Intermediate Risk
40,Male,45,Single,No,1,Good,Yes,No,Yes,Yes,Yes,No,6,Intermediate Risk
40,Male,45,Single,No,1,Normal,Yes,No,Yes,Yes,Yes,No,6,Intermediate Risk
35,Male,45,In a relationship,No,1,Normal,Yes,No,No,Maybe,Yes,No,8,Intermediate Risk
35,Male,45,Single,Yes,1,Normal,No,No,Yes,Maybe,No,No,6,Intermediate Risk
35,Male,45,Single,No,1,Bad,Not applicable,No,No,Yes,Neutral,No,6,Intermediate Risk
35,Male,45,Single,No,1,Normal,No,No,No,Maybe,Neutral,Yes,5.5,Intermediate Risk
30,Male,45,Single,No,1,Normal,No,No,No,Maybe,No,Yes,5,Intermediate Risk
30,Male,45,Single,No,1,Normal,Yes,No,No,Yes,No,No,6.5,High Risk
25,Male,45,Single,No,1,Normal,No,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
20,Male,45,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,5.5,Intermediate Risk
15,Male,45,Single,No,1,Normal,No,No,Yes,Yes,No,Yes,3,Intermediate Risk
10,Male,45,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,5,Intermediate Risk
5,Male,45,Single,Yes,2,Normal,No,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
65,Female,45,Single,No,1,Good,Yes,No,Yes,Maybe,Yes,No,6,Intermediate Risk
60,Female,45,In a relationship,No,2,Normal,No,No,Not applicable,No,Neutral,No,7,Intermediate Risk
50,Female,45,In a relationship,No,2,Normal,No,No,No,Yes,Yes,No,7,Intermediate Risk
45,Female,45,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
45,Female,45,Single,No,1,Bad,No,Not applicable,No,No,No,No,6,Intermediate Risk
45,Female,45,In a relationship,No,2,Good,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
45,Female,45,Single,No,1,Normal,Yes,No,No,Maybe,Neutral,No,5.5,Intermediate Risk
45,Female,45,In a relationship,No,1,Normal,Yes,No,No,Yes,Neutral,No,6.5,Intermediate Risk
40,Female,45,Single,No,1,Normal,Yes,No,Yes,Yes,Yes,No,6,Intermediate Risk
40,Female,45,In a relationship,No,2,Normal,No,No,No,Yes,Neutral,No,6,Intermediate Risk
35,Female,45,Single,Yes,1,Normal,No,No,Yes,Maybe,No,No,6,Intermediate Risk
15,Female,45,Single,No,1,Normal,No,No,Yes,Yes,No,Yes,3,Intermediate Risk
15,Female,45,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,Yes,4.5,High Risk
68,Male,44,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
60,Male,44,In a relationship,No,1,Good,No,No,Yes,Yes,No,Yes,7,Intermediate Risk
55,Male,44,In a relationship,No,2,Normal,Yes,No,No,Yes,Neutral,No,6,Intermediate Risk
45,Male,44,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
40,Male,44,Single,Yes,2,Good,No,No,No,Yes,Yes,No,6.5,Low Risk
40,Male,44,In a relationship,No,2,Normal,No,No,No,Yes,Neutral,No,6,Intermediate Risk
15,Male,44,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,6,High Risk
85,Male,43,In a relationship,No,1,Normal,Yes,No,Not applicable,Maybe,Neutral,No,7,Intermediate Risk
75,Male,43,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
55,Male,43,In a relationship,No,1,Good,No,No,No,Yes,Neutral,No,6,Intermediate Risk
50,Male,43,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
40,Male,43,In a relationship,No,2,Normal,No,No,No,Yes,Neutral,No,6,Intermediate Risk
35,Male,43,In a relationship,No,1,Good,Not applicable,No,No,Maybe,Yes,No,8,Intermediate Risk
45,Female,43,In a relationship,No,2,Good,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
45,Female,43,In a relationship,No,1,Normal,Yes,No,No,Yes,Neutral,No,6.5,Intermediate Risk
65,Male,42,In a relationship,No,1,Good,Yes,No,No,Maybe,Neutral,No,8.5,Intermediate Risk
55,Male,42,Single,Yes,2,Normal,Yes,No,Yes,Maybe,No,No,6,Intermediate Risk
50,Male,42,In a relationship,No,2,Normal,No,No,No,Yes,Yes,No,7,Intermediate Risk
45,Male,42,In a relationship,No,2,Normal,Yes,No,No,Yes,Yes,No,7,Intermediate Risk
45,Male,42,Single,No,1,Bad,No,Not applicable,No,No,No,No,6,Intermediate Risk
45,Male,42,Single,No,1,Normal,Yes,No,No,Maybe,Neutral,No,5.5,Intermediate Risk
40,Male,42,In a relationship,No,2,Normal,No,No,No,Yes,Neutral,No,6,Intermediate Risk
35,Male,42,In a relationship,No,1,Normal,Yes,No,No,Maybe,Yes,No,8,Intermediate Risk
30,Male,42,In a relationship,No,1,Normal,Not applicable,No,Not applicable,Maybe,Yes,No,8.5,Intermediate Risk
20,Male,42,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,5.5,Intermediate Risk
35,Female,42,Single,No,1,Normal,Yes,No,Yes,Yes,Neutral,No,6,Intermediate Risk
85,Male,41,In a relationship,No,1,Normal,Yes,No,Not applicable,Maybe,Neutral,No,7,Intermediate Risk
45,Male,41,Single,No,1,Bad,No,Not applicable,No,No,No,No,6,Intermediate Risk
40,Male,41,Single,No,1,Normal,Yes,No,Yes,Yes,Yes,No,6,Intermediate Risk
40,Male,41,Single,No,1,Normal,Yes,No,Yes,No,Neutral,No,6,Intermediate Risk
40,Male,41,In a relationship,No,2,Normal,No,No,No,Yes,Neutral,No,6,Intermediate Risk
35,Male,41,In a relationship,No,1,Bad,Yes,No,No,Yes,No,Yes,6,High Risk
60,Female,41,In a relationship,No,2,Normal,Yes,No,Yes,Not applicable,Neutral,No,8,Intermediate Risk
80,Male,40,In a relationship,Yes,4,Good,No,Yes,Yes,No,Yes,No,6,Low Risk
75,Male,40,In a relationship,Yes,2,Normal,Not applicable,Not applicable,Not applicable,Not applicable,Yes,No,6.5,Low Risk
60,Male,40,In a relationship,No,2,Normal,No,No,Not applicable,No,Neutral,No,7,Intermediate Risk
50,Male,40,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Neutral,Yes,6,Intermediate Risk
40,Male,40,Single,No,2,Good,No,No,No,Yes,Yes,No,6.5,Intermediate Risk
40,Male,40,Single,No,1,Normal,Yes,No,Yes,Yes,Yes,No,6,Intermediate Risk
40,Male,40,Single,No,1,Normal,No,No,Yes,Yes,Neutral,No,7,Intermediate Risk
40,Male,40,Single,No,1,Normal,Yes,No,Yes,No,Neutral,No,6,Intermediate Risk
40,Male,40,In a relationship,No,2,Normal,No,No,No,Yes,Neutral,No,6,Intermediate Risk
35,Male,40,Single,Yes,1,Normal,No,No,Yes,Maybe,Yes,No,6,Intermediate Risk
10,Male,40,Single,No,1,Bad,Yes,No,No,Maybe,No,No,6.5,High Risk
40,Female,40,In a relationship,No,2,Normal,No,No,No,Yes,Neutral,No,6,Intermediate Risk
75,Male,39,In a relationship,No,3,Good,No,No,Yes,Maybe,Neutral,Yes,7,Low Risk
70,Male,39,In a relationship,No,3,Good,Yes,No,No,No,Yes,No,7.5,Intermediate Risk
60,Male,39,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
55,Male,39,In a relationship,No,3,Normal,Yes,No,No,No,Yes,No,7,Intermediate Risk
45,Male,39,Single,No,2,Normal,Yes,No,No,Yes,Yes,No,6.5,Intermediate Risk
45,Male,39,In a relationship,No,2,Good,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
35,Male,39,Single,Yes,1,Normal,No,No,Yes,Maybe,Yes,No,6,Intermediate Risk
35,Male,39,In a relationship,No,1,Bad,Yes,No,No,Yes,No,Yes,6,High Risk
35,Male,39,Single,Yes,1,Normal,No,No,Yes,Maybe,No,No,6,Intermediate Risk
15,Male,39,Single,No,1,Bad,Not applicable,No,No,Yes,No,Yes,4,High Risk
60,Female,39,Single,No,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
85,Male,38,Single,Yes,2,Good,No,Not applicable,Yes,Not applicable,Yes,No,8,Low Risk
75,Male,38,Single,Yes,1,Normal,No,No,Yes,Not applicable,Yes,No,7,Intermediate Risk
75,Male,38,Single,Yes,3,Normal,No,No,Yes,Not applicable,Yes,No,7,Low Risk
75,Male,38,Single,Yes,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
55,Male,38,In a relationship,No,3,Normal,Yes,No,No,No,Yes,No,7,Intermediate Risk
55,Male,38,Single,Yes,2,Normal,Yes,No,Yes,Maybe,No,No,6,Intermediate Risk
50,Male,38,In a relationship,No,2,Normal,No,No,No,Yes,Yes,No,7,Intermediate Risk
45,Male,38,In a relationship,No,2,Normal,Yes,No,No,Yes,Yes,No,7,Intermediate Risk
45,Male,38,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
35,Male,38,In a relationship,No,3,Good,Not applicable,No,No,Maybe,Yes,No,8,Low Risk
35,Male,38,In a relationship,No,1,Good,Not applicable,No,No,Maybe,Yes,No,8,Intermediate Risk
35,Male,38,Single,No,1,Normal,Yes,No,Yes,Yes,Neutral,No,6,Intermediate Risk
85,Female,38,Single,No,2,Good,No,Not applicable,Yes,Not applicable,Yes,No,8,Low Risk
85,Male,37,In a relationship,No,2,Normal,Yes,No,Yes,Maybe,Neutral,Yes,8,Intermediate Risk
75,Male,37,Single,Yes,1,Normal,No,No,Yes,Not applicable,Yes,No,7,Intermediate Risk
70,Male,37,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
65,Male,37,Single,No,1,Good,Yes,No,No,Yes,Yes,No,6.5,Intermediate Risk
65,Male,37,Single,No,1,Good,Yes,No,Yes,Maybe,Yes,No,6,Intermediate Risk
55,Male,37,Single,Yes,2,Normal,Yes,No,Yes,Maybe,No,No,6,Intermediate Risk
55,Male,37,In a relationship,No,2,Normal,Yes,No,No,Yes,Neutral,No,6,Intermediate Risk
40,Male,37,Single,No,1,Normal,No,No,Yes,Yes,Neutral,No,7,Intermediate Risk
40,Male,37,Single,No,1,Normal,Yes,No,Yes,No,Neutral,No,6,Intermediate Risk
35,Male,37,Single,No,1,Normal,Yes,No,Yes,Yes,Neutral,No,6,Intermediate Risk
35,Male,37,Single,No,1,Bad,Not applicable,No,No,Yes,Neutral,No,6,Intermediate Risk
20,Male,37,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,5.5,Intermediate Risk
10,Male,37,Single,No,1,Bad,Yes,No,No,Yes,Neutral,Yes,3,High Risk
70,Female,37,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
60,Female,37,Single,No,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
55,Female,37,Single,No,1,Normal,Yes,No,Yes,Maybe,Yes,No,6.5,Intermediate Risk
45,Female,37,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
40,Female,37,Single,No,1,Normal,Yes,No,Yes,Yes,Yes,No,6,Intermediate Risk
40,Female,37,Single,No,1,Normal,Yes,No,Yes,No,Neutral,No,6,Intermediate Risk
35,Female,37,In a relationship,No,1,Normal,Yes,No,No,Maybe,Yes,No,8,Intermediate Risk
20,Female,37,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,5.5,Intermediate Risk
85,Male,36,In a relationship,No,1,Good,Yes,No,No,Maybe,No,No,6.5,Intermediate Risk
75,Male,36,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6,Intermediate Risk
75,Male,36,In a relationship,No,3,Good,No,No,Yes,Maybe,Neutral,Yes,7,Low Risk
75,Male,36,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
65,Male,36,Single,No,1,Good,Yes,No,Yes,Maybe,Yes,No,6,Intermediate Risk
60,Male,36,In a relationship,No,2,Normal,Not applicable,No,No,No,Neutral,Yes,7.5,Intermediate Risk
55,Male,36,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
45,Male,36,Single,No,2,Normal,Yes,No,No,Yes,Yes,No,6.5,Intermediate Risk
35,Male,36,Single,Yes,1,Normal,No,No,Yes,Maybe,Yes,No,6,Intermediate Risk
35,Male,36,In a relationship,No,1,Bad,Yes,No,No,Yes,No,Yes,6,High Risk
35,Male,36,Single,Yes,1,Normal,No,No,Yes,Maybe,No,No,6,Intermediate Risk
35,Female,36,In a relationship,No,1,Bad,Yes,No,No,Yes,No,Yes,6,High Risk
75,Male,35,In a relationship,No,3,Good,No,No,No,No,Yes,Yes,7,Low Risk
75,Male,35,In a relationship,No,3,Good,No,No,Yes,Maybe,Neutral,Yes,7,Low Risk
68,Male,35,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
67,Male,35,In a relationship,No,1,Good,Yes,No,Not applicable,Not applicable,Neutral,Yes,6.5,Intermediate Risk
60,Male,35,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
60,Male,35,In a relationship,No,4,Normal,Yes,No,Yes,Not applicable,Neutral,No,8,Intermediate Risk
60,Male,35,Single,No,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
55,Male,35,In a relationship,No,3,Normal,Yes,No,No,No,Yes,No,7,Intermediate Risk
55,Male,35,Single,No,2,Normal,Yes,No,Yes,Yes,No,No,6.5,Intermediate Risk
55,Male,35,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
50,Male,35,Single,Yes,1,Normal,Yes,No,Yes,Yes,No,Yes,6,Intermediate Risk
45,Male,35,In a relationship,No,2,Normal,Yes,No,No,Yes,Yes,No,7,Intermediate Risk
45,Male,35,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
35,Male,35,Single,Yes,1,Normal,No,No,Yes,Maybe,Yes,No,6,Intermediate Risk
35,Male,35,In a relationship,No,3,Good,Not applicable,No,No,Maybe,Yes,No,8,Low Risk
35,Male,35,In a relationship,No,1,Normal,Yes,No,No,Maybe,Yes,No,8,Intermediate Risk
35,Male,35,In a relationship,No,1,Good,Not applicable,No,No,Maybe,Yes,No,8,Intermediate Risk
35,Male,35,Single,No,1,Normal,Yes,No,Yes,Maybe,No,No,6,Intermediate Risk
35,Male,35,Single,Yes,1,Normal,No,No,Yes,Maybe,No,No,6,Intermediate Risk
35,Male,35,In a relationship,No,1,Bad,Yes,No,No,Yes,No,Yes,6,High Risk
35,Male,35,Single,Yes,3,Normal,No,No,No,Maybe,Neutral,Yes,5.5,Low Risk
35,Male,35,Single,No,1,Bad,Not applicable,No,No,Yes,Neutral,No,6,Intermediate Risk
30,Male,35,Single,No,1,Normal,Yes,No,No,Maybe,No,Yes,5,High Risk
25,Male,35,Single,No,1,Normal,No,No,No,Yes,Yes,No,7,Intermediate Risk
75,Female,35,Single,Yes,1,Normal,No,No,Yes,Not applicable,Yes,No,7,Intermediate Risk
65,Female,35,Single,Yes,2,Normal,No,No,Not applicable,Maybe,Yes,No,5,Intermediate Risk
50,Female,35,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
40,Female,35,Single,No,2,Good,No,No,No,Yes,Yes,No,6.5,Intermediate Risk
40,Female,35,In a relationship,No,2,Normal,No,No,No,Yes,Neutral,No,6,Intermediate Risk
35,Female,35,Single,Yes,1,Normal,Yes,No,Yes,Yes,Yes,Yes,6,High Risk
35,Female,35,In a relationship,No,1,Normal,Yes,No,No,Maybe,Yes,No,8,Intermediate Risk
35,Female,35,Single,Yes,1,Normal,No,No,Yes,Maybe,Yes,No,6,Intermediate Risk
35,Female,35,In a relationship,No,1,Bad,Yes,No,No,Yes,No,Yes,6,High Risk
35,Female,35,Single,No,1,Normal,No,No,No,Maybe,Neutral,Yes,5.5,Intermediate Risk
35,Female,35,Single,No,1,Normal,Yes,No,Yes,Yes,Neutral,No,6,Intermediate Risk
60,Male,34,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
60,Male,34,Single,No,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
50,Male,34,Single,No,2,Normal,No,No,No,Maybe,No,No,5,Intermediate Risk
45,Male,34,Single,No,2,Good,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
45,Male,34,Single,No,1,Bad,No,Not applicable,No,No,No,No,6,Intermediate Risk
40,Male,34,Single,No,2,Good,No,No,No,Yes,Yes,No,6.5,Intermediate Risk
40,Male,34,Single,No,1,Normal,Yes,No,Yes,No,Neutral,No,6,Intermediate Risk
40,Male,34,Single,No,1,Normal,No,No,Yes,Yes,Neutral,No,7,Intermediate Risk
35,Male,34,Single,Yes,1,Normal,No,No,Yes,Maybe,Yes,No,6,Intermediate Risk
35,Male,34,In a relationship,No,1,Bad,Yes,No,No,Yes,No,Yes,6,High Risk
30,Male,34,In a relationship,No,1,Normal,Not applicable,No,Not applicable,Maybe,Yes,No,8.5,Intermediate Risk
30,Male,34,Single,Yes,2,Normal,No,No,Not applicable,Yes,Neutral,Yes,6.5,Intermediate Risk
10,Male,34,Single,No,1,Bad,Yes,No,No,Yes,Neutral,Yes,3,High Risk
85,Female,34,In a relationship,No,2,Normal,Yes,No,Yes,Maybe,Neutral,Yes,8,Intermediate Risk
65,Female,34,Single,No,1,Good,Yes,No,No,Yes,Yes,No,6.5,Intermediate Risk
40,Female,34,Single,No,1,Normal,No,No,Yes,Yes,Neutral,No,7,Intermediate Risk
80,Male,33,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,7,Intermediate Risk
75,Male,33,Single,Yes,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
65,Male,33,Single,Yes,2,Normal,No,No,Not applicable,Maybe,Yes,No,5,Intermediate Risk
60,Male,33,In a relationship,No,1,Good,No,No,Yes,Yes,No,Yes,7,Intermediate Risk
55,Male,33,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,6.5,Intermediate Risk
55,Male,33,Single,No,2,Normal,Yes,No,Yes,Yes,No,No,6.5,Intermediate Risk
55,Male,33,In a relationship,No,1,Good,No,No,No,Yes,Neutral,No,6,Intermediate Risk
50,Male,33,Single,No,2,Normal,No,No,No,Maybe,No,No,5,Intermediate Risk
50,Male,33,Single,No,1,Normal,Yes,No,Yes,Not applicable,Neutral,No,7,Intermediate Risk
45,Male,33,Single,No,2,Normal,Yes,No,No,Yes,Yes,No,6.5,Intermediate Risk
45,Male,33,Single,No,1,Bad,No,Not applicable,No,No,No,No,6,Intermediate Risk
45,Male,33,In a relationship,No,2,Good,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
40,Male,33,Single,No,1,Good,Yes,No,Yes,Yes,Yes,No,6,Intermediate Risk
35,Male,33,In a relationship,No,2,Good,Not applicable,No,No,Maybe,Yes,No,8,Low Risk
35,Male,33,In a relationship,No,1,Normal,Yes,No,No,Maybe,Yes,No,8,Intermediate Risk
35,Male,33,Single,No,1,Normal,Yes,No,Yes,Yes,Neutral,No,6,Intermediate Risk
35,Male,33,Single,No,1,Normal,No,No,No,Maybe,Neutral,Yes,5.5,Intermediate Risk
30,Male,33,In a relationship,No,1,Normal,Not applicable,No,Not applicable,Maybe,Yes,No,8.5,Intermediate Risk
30,Male,33,Single,No,1,Normal,Yes,No,No,Yes,No,No,6.5,High Risk
30,Male,33,Single,Yes,2,Normal,No,No,Not applicable,Yes,Neutral,Yes,6.5,Intermediate Risk
30,Male,33,Single,No,1,Good,Yes,No,Not applicable,Yes,Neutral,No,6,Intermediate Risk
15,Male,33,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,6,Intermediate Risk
10,Male,33,Single,No,1,Bad,Yes,No,No,Maybe,No,No,6.5,High Risk
10,Male,33,Single,No,1,Bad,Yes,No,No,Yes,Neutral,Yes,3,High Risk
5,Male,33,Single,Yes,2,Normal,No,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
75,Female,33,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6,Intermediate Risk
30,Female,33,In a relationship,No,1,Normal,Not applicable,No,Not applicable,Maybe,Yes,No,8.5,Intermediate Risk
30,Female,33,Single,No,1,Normal,Yes,No,No,Maybe,No,Yes,5,High Risk
5,Female,33,Single,Yes,2,Normal,No,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
70,Male,32,Single,Yes,1,Normal,Not applicable,Not applicable,No,Maybe,Neutral,No,6,Intermediate Risk
70,Male,32,Single,Yes,3,Normal,Not applicable,Not applicable,No,Maybe,Neutral,No,6,Low Risk
65,Male,32,Single,No,2,Normal,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
55,Male,32,Single,No,2,Normal,Yes,No,Yes,Yes,No,No,6.5,Intermediate Risk
55,Male,32,Single,Yes,1,Good,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
45,Male,32,In a relationship,No,2,Normal,Yes,No,No,Yes,Yes,No,7,Intermediate Risk
45,Male,32,Single,No,2,Normal,Yes,No,No,Yes,Yes,No,6.5,Intermediate Risk
45,Male,32,In a relationship,No,1,Normal,Yes,No,No,Yes,Neutral,No,6.5,Intermediate Risk
35,Male,32,In a relationship,No,2,Good,Not applicable,No,No,Maybe,Yes,No,8,Low Risk
5,Male,32,Single,Yes,2,Normal,No,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
85,Female,32,Single,No,2,Normal,Not applicable,No,Yes,Yes,Yes,No,5.5,Intermediate Risk
70,Female,32,Single,Yes,2,Good,Yes,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
45,Female,32,Single,No,1,Bad,No,Not applicable,No,No,No,No,6,Intermediate Risk
30,Female,32,In a relationship,No,1,Normal,Not applicable,No,Not applicable,Maybe,Yes,No,8.5,Intermediate Risk
75,Male,31,In a relationship,No,3,Good,No,No,No,No,Yes,Yes,7,Low Risk
75,Male,31,Single,Yes,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
70,Male,31,Single,Yes,2,Good,Yes,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
55,Male,31,Single,Yes,1,Good,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
50,Male,31,Single,Yes,2,Good,Yes,No,Yes,Maybe,Neutral,No,7,Intermediate Risk
50,Male,31,Single,Yes,4,Good,Yes,No,Yes,Maybe,Neutral,No,7,Low Risk
45,Male,31,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
45,Male,31,In a relationship,No,2,Good,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
30,Male,31,In a relationship,No,1,Normal,Not applicable,No,Not applicable,Maybe,Yes,No,8.5,Intermediate Risk
35,Female,31,Single,Yes,1,Normal,Yes,No,Yes,Yes,Yes,Yes,6,Intermediate Risk
30,Female,31,In a relationship,No,1,Normal,Not applicable,No,Not applicable,Maybe,Yes,No,8.5,Intermediate Risk
55,Male,30,Single,Yes,2,Normal,Yes,No,Yes,Maybe,No,No,6,Intermediate Risk
40,Male,30,Single,No,1,Normal,Yes,No,Yes,Yes,Yes,No,6,High Risk
30,Male,30,In a relationship,No,1,Normal,Not applicable,No,Not applicable,Maybe,Yes,No,8.5,Intermediate Risk
30,Male,30,Single,No,1,Normal,No,No,No,Maybe,No,Yes,5,High Risk
30,Male,30,Single,No,1,Normal,Yes,No,No,Yes,No,No,6.5,High Risk
30,Male,30,Single,No,1,Normal,Yes,No,No,Maybe,No,Yes,5,High Risk
30,Male,30,Single,Yes,2,Normal,No,No,Not applicable,Yes,Neutral,Yes,6.5,Intermediate Risk
25,Male,30,Single,No,1,Bad,Yes,Not applicable,Not applicable,No,No,Yes,7,High Risk
20,Male,30,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,5.5,Intermediate Risk
10,Male,30,Single,No,1,Bad,Yes,No,No,Yes,Neutral,Yes,3,High Risk
40,Female,30,Single,No,2,Good,No,No,No,Yes,Yes,No,6.5,Intermediate Risk
30,Female,30,In a relationship,No,1,Normal,Not applicable,No,Not applicable,Maybe,Yes,No,8.5,Intermediate Risk
30,Female,30,Single,No,1,Normal,No,No,No,Maybe,No,Yes,5,Intermediate Risk
30,Female,30,Single,No,1,Normal,Yes,No,No,Yes,No,No,6.5,High Risk
30,Female,30,Single,No,1,Good,Yes,No,Not applicable,Yes,Neutral,No,6,Intermediate Risk
20,Female,30,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,5.5,Intermediate Risk
75,Male,29,Single,Yes,1,Normal,No,No,Yes,Not applicable,Yes,No,7,Intermediate Risk
75,Male,29,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
70,Male,29,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
60,Male,29,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
60,Male,29,Single,No,1,Good,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
55,Male,29,Single,No,1,Normal,Yes,No,Yes,Maybe,Yes,No,6.5,High Risk
45,Male,29,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,High Risk
40,Male,29,Single,No,1,Normal,No,No,Yes,Yes,Neutral,No,7,Intermediate Risk
35,Male,29,Single,Yes,1,Normal,No,No,Yes,Maybe,Yes,No,6,Intermediate Risk
35,Male,29,Single,No,1,Normal,Yes,No,Yes,Yes,Neutral,No,6,High Risk
30,Male,29,Single,No,1,Normal,Yes,No,No,Maybe,No,Yes,5,High Risk
25,Male,29,Single,No,1,Normal,No,No,No,Yes,Yes,No,7,Intermediate Risk
25,Male,29,Single,No,1,Bad,Yes,Not applicable,Not applicable,No,No,Yes,7,High Risk
15,Male,29,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,6,High Risk
10,Male,29,Single,No,1,Bad,Not applicable,No,No,Yes,No,Yes,4,High Risk
10,Male,29,Single,No,1,Bad,Yes,No,No,Yes,Neutral,Yes,3,High Risk
1,Male,29,Single,No,1,Bad,Not applicable,No,No,Yes,No,Yes,4,High Risk
70,Female,29,In a relationship,No,3,Good,Yes,No,No,No,Yes,No,7.5,Intermediate Risk
70,Female,29,Single,Yes,1,Normal,Not applicable,Not applicable,No,Maybe,Neutral,No,6,Intermediate Risk
45,Female,29,Single,No,3,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
35,Female,29,Single,Yes,1,Normal,No,No,Yes,Maybe,Yes,No,6,Intermediate Risk
10,Female,29,Single,No,1,Bad,Yes,No,No,Yes,Neutral,Yes,3,High Risk
10,Female,29,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,5,High Risk
1,Female,29,Single,No,1,Bad,Not applicable,No,No,Yes,No,Yes,4,High Risk
85,Male,28,Single,No,2,Normal,Not applicable,No,Yes,Yes,Yes,No,5.5,Intermediate Risk
75,Male,28,Single,Yes,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
75,Male,28,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
60,Male,28,Single,No,1,Good,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
60,Male,28,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,Yes,5,Intermediate Risk
60,Male,28,Single,No,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
55,Male,28,Single,Yes,1,Good,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
50,Male,28,Single,Yes,2,Good,Yes,No,Yes,Maybe,Neutral,No,7,Intermediate Risk
50,Male,28,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
40,Male,28,Single,No,1,Normal,No,No,Yes,Yes,Neutral,No,7,Intermediate Risk
35,Male,28,Single,Yes,1,Normal,Yes,No,Yes,Yes,Yes,Yes,6,Intermediate Risk
35,Male,28,Single,No,1,Normal,Yes,No,Yes,Yes,Neutral,No,6,High Risk
25,Male,28,Single,No,1,Normal,No,No,No,Yes,Yes,No,7,Intermediate Risk
25,Male,28,Single,No,3,Normal,No,No,No,Yes,Yes,No,7,Intermediate Risk
55,Female,28,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,6.5,Intermediate Risk
55,Female,28,In a relationship,No,1,Good,No,No,No,Yes,Neutral,No,6,High Risk
55,Female,28,Single,Yes,1,Good,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
50,Female,28,Single,Yes,2,Good,Yes,No,Yes,Maybe,Neutral,No,7,Intermediate Risk
40,Female,28,Single,No,2,Good,No,No,No,Yes,Yes,No,6.5,Intermediate Risk
85,Male,27,Single,No,1,Good,No,Not applicable,Yes,Not applicable,Yes,No,8,Intermediate Risk
85,Male,27,Single,No,2,Normal,Not applicable,No,Yes,Yes,Yes,No,5.5,Intermediate Risk
85,Male,27,In a relationship,No,2,Normal,Yes,No,Yes,Maybe,Neutral,Yes,8,Intermediate Risk
70,Male,27,In a relationship,No,1,Good,Yes,No,Not applicable,Maybe,Yes,No,7,Intermediate Risk
70,Male,27,Single,Yes,2,Good,Yes,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
70,Male,27,Single,Yes,1,Normal,Not applicable,Not applicable,No,Maybe,Neutral,No,6,Intermediate Risk
65,Male,27,Single,No,1,Good,Yes,No,No,Yes,Yes,No,6.5,Intermediate Risk
60,Male,27,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
55,Male,27,Single,No,2,Normal,Yes,No,Yes,Yes,No,No,6.5,Intermediate Risk
55,Male,27,Single,Yes,2,Normal,Yes,No,Yes,Maybe,No,No,6,Intermediate Risk
55,Male,27,In a relationship,No,2,Normal,Yes,No,No,Yes,Neutral,No,6,Intermediate Risk
55,Male,27,Single,Yes,1,Good,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
55,Male,27,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,7,Intermediate Risk
50,Male,27,Single,No,2,Normal,No,No,No,Maybe,No,No,5,Intermediate Risk
50,Male,27,Single,Yes,2,Good,Yes,No,No,Yes,No,No,6.5,Intermediate Risk
35,Male,27,In a relationship,No,1,Normal,Yes,No,No,Maybe,Yes,No,8,Intermediate Risk
35,Male,27,Single,No,1,Normal,Yes,No,Yes,Maybe,No,No,6,High Risk
35,Male,27,Single,Yes,1,Normal,No,No,Yes,Maybe,No,No,6,Intermediate Risk
30,Male,27,Single,No,1,Normal,Yes,No,No,Maybe,No,Yes,5,High Risk
25,Male,27,Single,No,1,Bad,Yes,Not applicable,Not applicable,No,No,Yes,7,High Risk
25,Male,27,Single,No,1,Normal,No,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
25,Male,27,Single,No,1,Normal,No,No,Yes,Maybe,Neutral,No,6,High Risk
20,Male,27,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,5.5,Intermediate Risk
10,Male,27,Single,No,1,Bad,Yes,No,No,Yes,Neutral,Yes,3,Intermediate Risk
75,Female,27,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
70,Female,27,Single,Yes,1,Normal,Not applicable,Not applicable,No,Maybe,Neutral,No,6,Intermediate Risk
65,Female,27,In a relationship,No,1,Good,Yes,No,No,Maybe,Neutral,No,8.5,Intermediate Risk
60,Female,27,In a relationship,No,2,Normal,Not applicable,No,No,No,Neutral,Yes,7.5,Intermediate Risk
55,Female,27,In a relationship,No,1,Good,No,No,No,Yes,Neutral,No,6,Intermediate Risk
55,Female,27,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,7,Intermediate Risk
50,Female,27,Single,Yes,1,Normal,Yes,No,Yes,Yes,No,Yes,6,High Risk
35,Female,27,Single,Yes,1,Normal,No,No,Yes,Maybe,No,No,6,Intermediate Risk
30,Female,27,Single,No,1,Normal,Yes,No,No,Maybe,No,Yes,5,High Risk
25,Female,27,Single,No,1,Normal,No,No,No,Yes,Yes,No,7,High Risk
5,Female,27,Single,Yes,2,Normal,No,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
70,Male,26,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,High Risk
68,Male,26,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
25,Male,26,Single,No,1,Bad,Yes,Not applicable,Not applicable,No,No,Yes,7,High Risk
25,Male,26,Single,No,1,Normal,No,No,Yes,Maybe,Neutral,No,6,High Risk
20,Male,26,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,5.5,Intermediate Risk
25,Female,26,Single,No,1,Normal,No,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
85,Male,25,In a relationship,No,2,Normal,Yes,No,Yes,Maybe,Neutral,Yes,8,Intermediate Risk
75,Male,25,In a relationship,No,3,Good,No,No,Yes,Maybe,Neutral,Yes,7,Intermediate Risk
70,Male,25,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,High Risk
70,Male,25,Single,No,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
65,Male,25,In a relationship,No,1,Good,Yes,No,No,Maybe,Neutral,No,8.5,Intermediate Risk
60,Male,25,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,Yes,5,Intermediate Risk
60,Male,25,Single,No,1,Good,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
55,Male,25,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,6.5,Intermediate Risk
55,Male,25,Single,No,1,Normal,Yes,No,Yes,Maybe,Yes,No,6.5,High Risk
55,Male,25,Single,No,2,Normal,Yes,No,Yes,Maybe,Yes,No,6.5,Intermediate Risk
50,Male,25,Single,Yes,2,Good,Yes,No,No,Yes,No,No,6.5,Intermediate Risk
50,Male,25,Single,No,1,Normal,Yes,No,Yes,Not applicable,Neutral,No,7,High Risk
50,Male,25,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
40,Male,25,Single,No,2,Good,No,No,No,Yes,Yes,No,6.5,Intermediate Risk
40,Male,25,Single,No,1,Normal,No,No,Yes,Yes,Neutral,No,7,Intermediate Risk
35,Male,25,Single,No,1,Bad,Not applicable,No,No,Yes,Neutral,No,6,High Risk
35,Male,25,Single,No,1,Normal,Yes,No,Yes,Yes,Neutral,No,6,High Risk
30,Male,25,Single,No,1,Good,Yes,No,Not applicable,Yes,Neutral,No,6,Intermediate Risk
25,Male,25,Single,No,1,Normal,No,No,No,Yes,Yes,No,7,Intermediate Risk
25,Male,25,Single,No,1,Bad,Yes,Not applicable,Not applicable,No,No,Yes,7,High Risk
25,Male,25,Single,No,1,Normal,No,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
20,Male,25,Single,No,1,Bad,Yes,No,No,Yes,No,Yes,3,High Risk
15,Male,25,Single,No,1,Normal,No,No,Yes,Yes,No,Yes,3,High Risk
15,Male,25,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,Yes,4.5,High Risk
85,Female,25,In a relationship,No,1,Normal,Yes,No,Not applicable,Maybe,Neutral,No,7,High Risk
75,Female,25,In a relationship,No,3,Good,No,No,No,No,Yes,Yes,7,Intermediate Risk
60,Female,25,Single,No,1,Good,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
60,Female,25,In a relationship,No,2,Normal,Not applicable,No,No,No,Neutral,Yes,7.5,Intermediate Risk
55,Female,25,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,6.5,Intermediate Risk
45,Female,25,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,High Risk
35,Female,25,In a relationship,No,1,Normal,Yes,No,No,Maybe,Yes,No,8,High Risk
30,Female,25,Single,No,1,Normal,Yes,No,No,Maybe,No,Yes,5,High Risk
25,Female,25,Single,No,1,Normal,No,No,No,Yes,Yes,No,7,High Risk
25,Female,25,Single,No,1,Bad,Yes,Not applicable,Not applicable,No,No,Yes,7,High Risk
25,Female,25,Single,No,1,Normal,No,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
20,Female,25,Single,No,1,Bad,Yes,No,No,Yes,No,Yes,3,High Risk
15,Female,25,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,6,High Risk
85,Male,24,Single,No,2,Normal,Not applicable,No,Yes,Yes,Yes,No,5.5,Intermediate Risk
80,Male,24,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,7,Intermediate Risk
70,Male,24,In a relationship,No,1,Good,Yes,No,Not applicable,Maybe,Yes,No,7,Intermediate Risk
70,Male,24,Single,Yes,2,Good,Yes,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
65,Male,24,Single,Yes,2,Normal,No,No,Not applicable,Maybe,Yes,No,5,Intermediate Risk
60,Male,24,Single,No,1,Good,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
60,Male,24,Single,Yes,1,Normal,No,No,Yes,Yes,Yes,Yes,5,Intermediate Risk
60,Male,24,In a relationship,No,2,Normal,Yes,No,Yes,Not applicable,Neutral,No,8,Intermediate Risk
55,Male,24,Single,Yes,1,Good,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
50,Male,24,In a relationship,No,2,Normal,No,No,No,Yes,Yes,No,7,Intermediate Risk
50,Male,24,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
50,Male,24,Single,Yes,2,Good,Yes,No,Yes,Maybe,Neutral,No,7,Intermediate Risk
50,Male,24,Single,No,1,Normal,Yes,No,Yes,Not applicable,Neutral,No,7,Intermediate Risk
40,Male,24,Single,No,2,Good,No,No,No,Yes,Yes,No,6.5,Intermediate Risk
40,Male,24,Single,No,1,Normal,No,No,Yes,Yes,Neutral,No,7,Intermediate Risk
40,Male,24,Single,No,1,Normal,Yes,No,Yes,No,Neutral,No,6,High Risk
35,Male,24,Single,Yes,1,Normal,Yes,No,Yes,Yes,Yes,Yes,6,High Risk
35,Male,24,In a relationship,No,1,Good,Not applicable,No,No,Maybe,Yes,No,8,Intermediate Risk
30,Male,24,Single,Yes,2,Normal,No,No,Not applicable,Yes,Neutral,Yes,6.5,Intermediate Risk
25,Male,24,Single,No,1,Normal,No,No,No,Yes,Yes,No,7,Intermediate Risk
10,Male,24,Single,No,1,Bad,Yes,No,No,Yes,Neutral,Yes,3,High Risk
1,Male,24,Single,No,1,Normal,Yes,No,No,Yes,No,Yes,5,High Risk
1,Male,24,Single,No,1,Bad,Not applicable,No,No,Yes,No,Yes,4,High Risk
85,Female,24,Single,No,2,Normal,Not applicable,No,Yes,Yes,Yes,No,5.5,Intermediate Risk
80,Female,24,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,7,High Risk
70,Female,24,Single,Yes,2,Good,Yes,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
70,Female,24,Single,Yes,1,Normal,Not applicable,Not applicable,No,Maybe,Neutral,No,6,Intermediate Risk
60,Female,24,In a relationship,No,2,Normal,Not applicable,No,No,No,Neutral,Yes,7.5,Intermediate Risk
60,Female,24,Single,No,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
25,Female,24,Single,No,1,Bad,Yes,Not applicable,Not applicable,No,No,Yes,7,High Risk
18,Female,24,Single,No,1,Bad,Not applicable,No,No,Yes,No,Yes,4,High Risk
90,Male,23,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
70,Male,23,In a relationship,No,1,Good,Yes,No,Not applicable,Maybe,Yes,No,7,Intermediate Risk
70,Male,23,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,High Risk
68,Male,23,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
67,Male,23,In a relationship,No,1,Good,Yes,No,Not applicable,Not applicable,Neutral,Yes,6.5,Intermediate Risk
60,Male,23,Single,No,1,Good,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
60,Male,23,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
60,Male,23,In a relationship,No,2,Normal,Yes,No,Yes,Not applicable,Neutral,No,8,Intermediate Risk
55,Male,23,In a relationship,No,3,Normal,Yes,No,No,No,Yes,No,7,Intermediate Risk
50,Male,23,In a relationship,No,2,Normal,No,No,No,Yes,Yes,No,7,Intermediate Risk
50,Male,23,Single,Yes,1,Normal,Yes,No,Yes,Yes,No,Yes,6,High Risk
50,Male,23,Single,No,2,Normal,No,No,No,Maybe,No,No,5,High Risk
50,Male,23,Single,No,1,Normal,Yes,No,Yes,Not applicable,Neutral,No,7,High Risk
50,Male,23,Single,Yes,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
45,Male,23,Single,No,2,Good,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
45,Male,23,Single,No,2,Normal,Yes,No,No,Yes,Yes,No,6.5,Intermediate Risk
30,Male,23,Single,No,1,Normal,Yes,No,No,Yes,No,No,6.5,High Risk
30,Male,23,Single,No,1,Normal,Yes,No,No,Maybe,No,Yes,5,High Risk
25,Male,23,Single,No,1,Normal,No,No,No,Yes,Yes,No,7,Intermediate Risk
25,Male,23,Single,No,1,Bad,Yes,Not applicable,Not applicable,No,No,Yes,7,High Risk
25,Male,23,Single,No,1,Normal,No,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
10,Male,23,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,5,High Risk
60,Female,23,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
60,Female,23,In a relationship,No,2,Normal,No,No,Not applicable,No,Neutral,No,7,Intermediate Risk
55,Female,23,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,6.5,Intermediate Risk
50,Female,23,Single,Yes,2,Good,Yes,No,Yes,Maybe,Neutral,No,7,Intermediate Risk
45,Female,23,Single,No,2,Normal,Yes,No,No,Yes,Yes,No,5.5,High Risk
35,Female,23,Single,Yes,1,Normal,No,No,Yes,Maybe,No,No,6,Intermediate Risk
25,Female,23,Single,No,1,Bad,Yes,Not applicable,Not applicable,No,No,Yes,7,High Risk
85,Male,22,In a relationship,No,1,Good,Yes,No,No,Maybe,No,No,6.5,Intermediate Risk
65,Male,22,In a relationship,No,1,Good,Yes,No,No,Maybe,No,Yes,6,Intermediate Risk
65,Male,22,In a relationship,No,1,Good,Yes,No,No,Maybe,Neutral,No,8.5,Intermediate Risk
60,Male,22,Single,No,1,Good,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
60,Male,22,In a relationship,No,1,Good,No,No,Yes,Yes,No,Yes,7,High Risk
55,Male,22,Single,No,1,Normal,Yes,No,Yes,Maybe,Yes,No,6.5,High Risk
55,Male,22,In a relationship,No,2,Normal,Yes,No,No,Yes,Neutral,No,6,Intermediate Risk
50,Male,22,Single,Yes,1,Normal,Yes,No,Yes,Yes,No,Yes,6,High Risk
50,Male,22,Single,No,1,Normal,Yes,No,Yes,Not applicable,Neutral,No,7,Intermediate Risk
50,Male,22,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Neutral,Yes,6,Intermediate Risk
45,Male,22,In a relationship,No,2,Normal,Yes,No,No,Yes,Yes,No,7,Intermediate Risk
45,Male,22,In a relationship,No,2,Good,Yes,No,No,Maybe,Neutral,No,6.5,Intermediate Risk
45,Male,22,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,High Risk
40,Male,22,In a relationship,No,2,Normal,No,No,No,Yes,Neutral,No,6,Intermediate Risk
35,Male,22,Single,Yes,1,Normal,Yes,No,Yes,Yes,Yes,Yes,6,Intermediate Risk
30,Male,22,Single,No,1,Normal,Yes,No,No,Yes,No,No,6.5,High Risk
25,Male,22,Single,No,1,Normal,No,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
10,Male,22,Single,No,1,Bad,Yes,No,No,Maybe,No,No,6.5,High Risk
10,Male,22,Single,No,1,Bad,Yes,No,No,Yes,Neutral,Yes,3,Intermediate Risk
85,Female,22,In a relationship,No,1,Good,Yes,No,No,Maybe,No,No,6.5,Intermediate Risk
70,Female,22,In a relationship,No,1,Good,Yes,No,Not applicable,Maybe,Yes,No,7,Intermediate Risk
70,Female,22,In a relationship,No,3,Good,Yes,No,No,No,Yes,No,7.5,Intermediate Risk
65,Female,22,Single,No,2,Normal,Yes,No,Yes,Yes,Neutral,No,6.5,Intermediate Risk
60,Female,22,In a relationship,No,2,Normal,No,No,Not applicable,No,Neutral,No,7,Intermediate Risk
55,Female,22,In a relationship,No,2,Normal,Yes,No,No,Yes,Neutral,No,6,High Risk
90,Male,21,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Yes,No,7.5,Intermediate Risk
85,Male,21,Single,No,1,Good,No,Not applicable,Yes,Not applicable,Yes,No,8,Intermediate Risk
80,Male,21,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,7,Intermediate Risk
75,Male,21,Single,Yes,1,Normal,No,No,Yes,Not applicable,Yes,No,7,Intermediate Risk
75,Male,21,In a relationship,No,3,Good,No,No,Yes,Maybe,Neutral,Yes,7,Intermediate Risk
70,Male,21,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,High Risk
65,Male,21,In a relationship,No,1,Good,Yes,No,No,Maybe,Neutral,No,8.5,Intermediate Risk
60,Male,21,In a relationship,No,2,Normal,Not applicable,No,No,No,Neutral,Yes,7.5,Intermediate Risk
55,Male,21,Single,No,1,Normal,Yes,No,Yes,Maybe,Yes,No,6.5,High Risk
50,Male,21,In a relationship,No,2,Normal,No,No,No,Yes,Yes,No,7,Intermediate Risk
40,Male,21,Single,No,1,Good,Yes,No,Yes,Yes,Yes,No,6,Intermediate Risk
40,Male,21,Single,No,2,Good,No,No,No,Yes,Yes,No,6.5,Intermediate Risk
35,Male,21,Single,No,1,Normal,Yes,No,Yes,Yes,Neutral,No,6,High Risk
30,Male,21,Single,No,1,Good,Yes,No,Not applicable,Yes,Neutral,No,6,Intermediate Risk
25,Male,21,Single,No,1,Normal,No,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
10,Male,21,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,5,High Risk
1,Male,21,Single,No,1,Normal,Yes,No,No,Yes,No,Yes,5,High Risk
1,Male,21,Single,No,1,Bad,Not applicable,No,No,Yes,No,Yes,4,High Risk
85,Female,21,Single,No,1,Good,No,Not applicable,Yes,Not applicable,Yes,No,8,Intermediate Risk
75,Female,21,In a relationship,No,3,Good,No,No,Yes,Maybe,Neutral,Yes,7,Intermediate Risk
75,Female,21,In a relationship,No,2,Normal,Yes,No,No,Maybe,Neutral,No,6,Intermediate Risk
30,Female,21,Single,No,1,Normal,No,No,No,Maybe,No,Yes,5,High Risk
30,Female,21,Single,No,1,Good,Yes,No,Not applicable,Yes,Neutral,No,6,Intermediate Risk
25,Female,21,Single,No,1,Bad,Yes,Not applicable,Not applicable,No,No,Yes,7,Intermediate Risk
10,Female,21,Single,No,1,Bad,Yes,No,No,Maybe,No,No,6.5,High Risk
60,Male,20,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
55,Male,20,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,6.5,Intermediate Risk
55,Male,20,Single,No,1,Normal,Yes,No,Yes,Maybe,Yes,No,6.5,Intermediate Risk
50,Male,20,In a relationship,No,2,Normal,No,No,No,Yes,Yes,No,7,Intermediate Risk
50,Male,20,Single,No,2,Normal,No,No,No,Maybe,No,No,5,Intermediate Risk
45,Male,20,Single,No,2,Normal,Yes,No,No,Yes,Yes,No,6.5,Intermediate Risk
45,Male,20,Single,No,2,Good,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
40,Male,20,Single,No,1,Good,Yes,No,Yes,Yes,Yes,No,6,Intermediate Risk
30,Male,20,Single,No,1,Normal,Yes,No,No,Maybe,No,Yes,5,Intermediate Risk
30,Male,20,Single,No,1,Good,Yes,No,Not applicable,Yes,Neutral,No,6,Intermediate Risk
20,Male,20,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,5.5,Intermediate Risk
15,Male,20,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,6,Intermediate Risk
15,Male,20,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,Yes,4.5,High Risk
10,Male,20,Single,No,1,Bad,Yes,No,No,Yes,Neutral,Yes,3,High Risk
5,Male,20,Single,Yes,2,Normal,No,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
60,Female,20,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
50,Female,20,Single,No,1,Normal,Yes,No,Yes,Not applicable,Neutral,No,7,Intermediate Risk
30,Female,20,Single,Yes,2,Normal,No,No,Not applicable,Yes,Neutral,Yes,6.5,Intermediate Risk
20,Female,20,Single,No,1,Normal,No,No,No,Maybe,Neutral,No,5.5,Intermediate Risk
85,Male,19,Single,Yes,1,Good,No,Not applicable,Yes,Not applicable,Yes,No,8,Low Risk
85,Male,19,Single,Yes,3,Good,No,Not applicable,Yes,Not applicable,Yes,No,8,Low Risk
75,Male,19,In a relationship,No,3,Good,No,No,No,No,Yes,Yes,7,Low Risk
75,Male,19,Single,Yes,1,Normal,No,No,Yes,Not applicable,Yes,No,7,Intermediate Risk
70,Male,19,In a relationship,No,1,Good,Yes,No,Not applicable,Maybe,Yes,No,7,Intermediate Risk
60,Male,19,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
60,Male,19,Single,No,1,Good,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
55,Male,19,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,6.5,Intermediate Risk
50,Male,19,In a relationship,No,2,Normal,No,No,No,Yes,Yes,No,7,Intermediate Risk
50,Male,19,Single,No,1,Normal,Yes,No,Yes,Not applicable,Neutral,No,7,Intermediate Risk
45,Male,19,Single,No,2,Good,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
45,Male,19,Single,Yes,2,Good,No,No,Yes,Yes,Yes,No,6.5,Low Risk
40,Male,19,Single,No,1,Good,Yes,No,Yes,Yes,Yes,No,6,Intermediate Risk
35,Male,19,Single,No,1,Normal,Yes,No,Yes,Maybe,No,No,6,Intermediate Risk
35,Male,19,Single,No,1,Bad,Not applicable,No,No,Yes,Neutral,No,6,Intermediate Risk
25,Male,19,Single,No,1,Normal,No,No,No,Yes,Yes,No,7,Intermediate Risk
15,Male,19,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,6,Intermediate Risk
15,Male,19,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,Yes,4.5,High Risk
80,Female,19,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,7,Intermediate Risk
40,Female,19,Single,No,2,Good,No,No,No,Yes,Yes,No,6.5,Intermediate Risk
15,Female,19,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,Yes,4.5,High Risk
80,Male,18,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,7,Intermediate Risk
75,Male,18,In a relationship,No,3,Good,No,No,Yes,Maybe,Neutral,Yes,7,Low Risk
70,Male,18,Single,Yes,2,Good,Yes,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
67,Male,18,In a relationship,No,1,Good,Yes,No,Not applicable,Not applicable,Neutral,Yes,6.5,Intermediate Risk
60,Male,18,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
50,Male,18,Single,No,1,Normal,Yes,No,Yes,Not applicable,Neutral,No,7,Intermediate Risk
40,Male,18,Single,No,1,Normal,Yes,No,Yes,No,Neutral,No,6,Intermediate Risk
35,Male,18,Single,Yes,1,Normal,No,No,Yes,Maybe,Yes,No,6,Intermediate Risk
30,Male,18,Single,Yes,4,Normal,No,No,Not applicable,Yes,Neutral,Yes,6.5,Low Risk
15,Male,18,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,6,High Risk
10,Male,18,Single,No,1,Bad,Yes,No,No,Maybe,No,No,6.5,High Risk
85,Female,18,In a relationship,No,1,Good,Yes,No,No,Maybe,No,No,6.5,Intermediate Risk
75,Female,18,In a relationship,No,3,Good,No,No,No,No,Yes,Yes,7,Intermediate Risk
70,Female,18,Single,Yes,2,Good,Yes,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
45,Female,18,In a relationship,No,1,Normal,Yes,No,No,Yes,Neutral,No,6.5,Intermediate Risk
50,Male,17,Single,No,2,Normal,No,No,No,Maybe,No,No,5,Intermediate Risk
85,Male,16,Single,No,2,Normal,Not applicable,No,Yes,Yes,Yes,No,5.5,Intermediate Risk
55,Male,16,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,6.5,Intermediate Risk
50,Male,16,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Neutral,Yes,6,Intermediate Risk
50,Male,16,Single,No,1,Normal,Yes,No,Yes,Not applicable,Neutral,No,7,Intermediate Risk
45,Male,16,Single,Yes,2,Good,No,No,Yes,Yes,Yes,No,6.5,Low Risk
45,Male,16,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,No,6,Intermediate Risk
40,Male,16,Single,No,1,Normal,Yes,No,Yes,Yes,Yes,No,6,Intermediate Risk
35,Male,16,Single,No,1,Normal,Yes,No,Yes,Maybe,No,No,6,Intermediate Risk
15,Male,16,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,Yes,4.5,Intermediate Risk
60,Female,16,Single,No,2,Normal,No,No,Yes,Maybe,Yes,No,7,Intermediate Risk
55,Female,16,Single,Yes,1,Good,No,No,Yes,Yes,Yes,No,7.5,Intermediate Risk
35,Female,16,Single,No,1,Normal,Yes,No,Yes,Maybe,No,No,6,Intermediate Risk
15,Female,16,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,Yes,4.5,High Risk
10,Female,16,Single,No,1,Bad,Yes,No,No,Maybe,No,No,6.5,High Risk
85,Male,15,Single,No,2,Normal,Not applicable,No,Yes,Yes,Yes,No,5.5,Intermediate Risk
75,Male,15,Single,Yes,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
70,Male,15,Single,Yes,2,Good,Yes,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
65,Male,15,Single,Yes,3,Normal,No,No,Not applicable,Maybe,Yes,No,5,Low Risk
65,Male,15,In a relationship,No,1,Good,Yes,No,No,Maybe,No,Yes,6,Intermediate Risk
60,Male,15,In a relationship,No,2,Normal,Not applicable,No,No,No,Neutral,Yes,7.5,Intermediate Risk
60,Male,15,Single,No,2,Normal,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
55,Male,15,Single,Yes,1,Good,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
50,Male,15,In a relationship,No,3,Normal,No,No,No,Yes,Yes,No,7,Low Risk
50,Male,15,In a relationship,No,3,Normal,Yes,No,Not applicable,Maybe,Neutral,Yes,6,Intermediate Risk
45,Male,15,In a relationship,No,2,Normal,Yes,No,No,Yes,Yes,No,7,Intermediate Risk
40,Male,15,In a relationship,No,2,Normal,No,No,No,Yes,Neutral,No,6,Intermediate Risk
15,Male,15,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,6,High Risk
15,Male,15,Single,No,2,Normal,No,No,Yes,Yes,No,Yes,3,Intermediate Risk
1,Male,15,Single,No,1,Bad,No,No,No,Yes,No,Yes,4,High Risk
55,Female,15,Single,Yes,1,Good,Yes,No,Yes,Maybe,Neutral,No,6.5,Intermediate Risk
50,Female,15,Single,Yes,2,Good,Yes,No,Yes,Maybe,Neutral,No,7,Intermediate Risk
15,Female,15,In a relationship,No,1,Normal,Yes,No,No,Yes,Yes,No,6,High Risk
15,Female,15,Single,No,1,Normal,Yes,No,Yes,Maybe,Neutral,Yes,4.5,Intermediate Risk
45,Male,14,Single,No,2,Good,No,No,Yes,Yes,Yes,No,6.5,Intermediate Risk
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment