Commit dbfdbd28 authored by Sachindu's avatar Sachindu

Api created

parent 22b1a4ea
# Default ignored files
/shelf/
/workspace.xml
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$">
<excludeFolder url="file://$MODULE_DIR$/venv" />
</content>
<orderEntry type="jdk" jdkName="Python 3.10" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
<component name="PyDocumentationSettings">
<option name="format" value="PLAIN" />
<option name="myDocStringFormat" value="Plain" />
</component>
</module>
\ No newline at end of file
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>
\ No newline at end of file
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.10" project-jdk-type="Python SDK" />
<component name="PyCharmProfessionalAdvertiser">
<option name="shown" value="true" />
</component>
</project>
\ No newline at end of file
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/ChatbotBE.iml" filepath="$PROJECT_DIR$/.idea/ChatbotBE.iml" />
</modules>
</component>
</project>
\ No newline at end of file
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$" vcs="Git" />
</component>
</project>
\ No newline at end of file
web gunicorn mysite.wsgi:application --log-file -
\ No newline at end of file
from django.contrib import admin
from .models import Chat
admin.site.register(Chat)
from django.apps import AppConfig
class ApiConfig(AppConfig):
default_auto_field = 'django.db.models.BigAutoField'
name = 'api'
# Generated by Django 4.1 on 2022-08-25 06:14
from django.db import migrations, models
class Migration(migrations.Migration):
initial = True
dependencies = [
]
operations = [
migrations.CreateModel(
name='Note',
fields=[
('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('body', models.TextField()),
('updated', models.DateTimeField(auto_now=True)),
('created', models.DateTimeField(auto_now_add=True)),
],
options={
'ordering': ['-updated'],
},
),
]
from django.db import models
class Chat(models.Model):
body = models.TextField()
updated = models.DateTimeField(auto_now=True)
created = models.DateTimeField(auto_now_add=True)
def __str__(self):
return self.body[0:50]
class Meta:
ordering = ['-updated']
from rest_framework.serializers import ModelSerializer
from .models import Chat
class ChatSerializer(ModelSerializer):
class Meta:
model = Chat
fields = '__all__'
from django.test import TestCase
# Create your tests here.
from django.urls import path
from . import views
urlpatterns = [
path('chat/', views.getChatBot),
path('predict/', views.getPrecdict),
]
from django.shortcuts import render
from rest_framework.decorators import api_view
from rest_framework.response import Response
from chat import get_response, get_sa
@api_view(['GET'])
def getChatBot(request):
return Response("Welcome to Canis care Vet bot!")
@api_view(['POST'])
def getPrecdict(request):
data = request.data
message = data['message']
output = get_response(message)
sa = get_sa(message)
result = output+","+str(sa)
return Response(result)
import random
import json
import torch
from textblob import TextBlob
from model import NeuralNet
from nltk_utils import bag_of_words, tokenize
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
with open('intents.json', 'r') as json_data:
intents = json.load(json_data)
FILE = "model.h5"
data = torch.load(FILE)
input_size = data["input_size"]
hidden_size = data["hidden_size"]
output_size = data["output_size"]
all_words = data['all_words']
tags = data['tags']
model_state = data["model_state"]
model = NeuralNet(input_size, hidden_size, output_size).to(device)
model.load_state_dict(model_state)
model.eval()
bot_name = "VetBot"
def get_response(msg):
sentence = tokenize(msg)
X = bag_of_words(sentence, all_words)
X = X.reshape(1, X.shape[0])
X = torch.from_numpy(X).to(device)
output = model(X)
_, predicted = torch.max(output, dim=1)
tag = tags[predicted.item()]
probs = torch.softmax(output, dim=1)
prob = probs[0][predicted.item()]
if prob.item() > 0.75:
for intent in intents['intents']:
if tag == intent["tag"]:
return random.choice(intent['bot_response'])
return "I didn't get that, try again."
def get_sa(msg):
edu = TextBlob(msg)
sa = edu.sentiment.polarity
return sa
if __name__ == "__main__":
print("Welcome to Canis care Vet bot!")
while True:
sentence = input("You: ")
if sentence == "quit":
break
# getting sentiment analysis value
resp = get_response(sentence)
print(resp)
......@@ -111,8 +111,8 @@
"What are the precautions for Dandruff?",
"What are the Dandruff precautions?",
"What are some Dandruff preventative measures?",
"How can I prevent my dog ​​from Dandruff?",
"How can I keep my dog from getting Dandruff?",
"How could I prevent my dog ​​from Dandruff?",
"How could I keep my dog from getting Dandruff?",
"Precautions for Dandruff?"
],
"bot_response": [
......@@ -486,6 +486,41 @@
"Flea allergy, Food allergy, Inhalant or contact allergy",
"Allergy to the normal bacterial flora and Yeast organisms of the skin"
]
},
{
"tag": "identify1",
"patterns": [
"Itchiness"
],
"bot_response": ["May be Ringworm or Dandruff or Lupus or Canine Atopic Dermatitis or Mange or Folliculitis"]
},
{
"tag": "identify2",
"patterns": [
"Hair loss"
],
"bot_response": ["May be Ringworm or Dandruff or Yeast Infections or Mange or Folliculitis"]
},
{
"tag": "identify3",
"patterns": [
"Scratching"
],
"bot_response": ["May be Ringworm or Ticks and Fleas or Yeast Infections or Lupus or Canine Atopic Dermatitis"]
},
{
"tag": "identify4",
"patterns": [
"Redness"
],
"bot_response": ["May be Canine Atopic Dermatitis or Mange or Folliculitis or Lupus or Canine Atopic Dermatitis"]
},
{
"tag": "identify5",
"patterns": [
"Papules"
],
"bot_response": ["May be Impetigo or Folliculitis"]
}
]
}
#!/usr/bin/env python
"""Django's command-line utility for administrative tasks."""
import os
import sys
def main():
"""Run administrative tasks."""
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'mysite.settings')
try:
from django.core.management import execute_from_command_line
except ImportError as exc:
raise ImportError(
"Couldn't import Django. Are you sure it's installed and "
"available on your PYTHONPATH environment variable? Did you "
"forget to activate a virtual environment?"
) from exc
execute_from_command_line(sys.argv)
if __name__ == '__main__':
main()
import torch
import torch.nn as nn
class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNet, self).__init__()
self.l1 = nn.Linear(input_size, hidden_size)
self.l2 = nn.Linear(hidden_size, hidden_size)
self.l3 = nn.Linear(hidden_size, num_classes)
self.relu = nn.ReLU()
def forward(self, x):
out = self.l1(x)
out = self.relu(out)
out = self.l2(out)
out = self.relu(out)
out = self.l3(out)
# no activation and no softmax at the end
return out
"""
ASGI config for mysite project.
It exposes the ASGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/
"""
import os
from django.core.asgi import get_asgi_application
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'mysite.settings')
application = get_asgi_application()
"""
Django settings for mysite project.
Generated by 'django-admin startproject' using Django 3.2.15.
For more information on this file, see
https://docs.djangoproject.com/en/3.2/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/3.2/ref/settings/
"""
import os
from pathlib import Path
import django_heroku
import dj_database_url
# Build paths inside the project like this: BASE_DIR / 'subdir'.
BASE_DIR = Path(__file__).resolve().parent.parent
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'django-insecure-0gurly7=gyq2pso@wuq_t&*&=268k=0e&ro8n4t49(e#rtt7l$'
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED_HOSTS = ['*']
# Application definition
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'api.apps.ApiConfig',
'rest_framework',
'corsheaders'
]
MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
"corsheaders.middleware.CorsMiddleware",
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
]
ROOT_URLCONF = 'mysite.urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [BASE_DIR / 'templates'],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
WSGI_APPLICATION = 'mysite.wsgi.application'
# Database
# https://docs.djangoproject.com/en/3.2/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': BASE_DIR / 'db.sqlite3',
}
}
# Password validation
# https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = [
{
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},
]
# Internationalization
# https://docs.djangoproject.com/en/3.2/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/3.2/howto/static-files/
STATIC_URL = '/static/'
STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles')
STATICFILES_DIRS = (os.path.join(BASE_DIR, 'static'),)
django_heroku.settings(locals())
# Default primary key field type
# https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field
DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
CORS_ALLOW_ALL_ORIGINS = True
\ No newline at end of file
"""mysite URL Configuration
The `urlpatterns` list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/3.2/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: path('', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: path('', Home.as_view(), name='home')
Including another URLconf
1. Import the include() function: from django.urls import include, path
2. Add a URL to urlpatterns: path('blog/', include('blog.urls'))
"""
from django.contrib import admin
from django.urls import path, include
urlpatterns = [
path('admin/', admin.site.urls),
path('', include('api.urls'))
]
"""
WSGI config for mysite project.
It exposes the WSGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/
"""
import os
from django.core.wsgi import get_wsgi_application
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'mysite.settings')
application = get_wsgi_application()
import numpy as np
import nltk
# nltk.download('punkt')
from nltk.stem.porter import PorterStemmer
stemmer = PorterStemmer()
def tokenize(sentence):
return nltk.word_tokenize(sentence)
def stem(word):
return stemmer.stem(word.lower())
def bag_of_words(tokenized_sentence, words):
# stem each word
sentence_words = [stem(word) for word in tokenized_sentence]
# initialize bag with 0 for each word
bag = np.zeros(len(words), dtype=np.float32)
for idx, w in enumerate(words):
if w in sentence_words:
bag[idx] = 1
return bag
asgiref==3.5.2
click==8.1.3
colorama==0.4.5
dj-database-url==1.0.0
Django==4.1.2
django-heroku==0.3.1
gunicorn==20.1.0
joblib==1.2.0
nltk==3.7
numpy==1.23.3
psycopg2==2.9.4
regex==2022.9.13
sqlparse==0.4.3
textblob==0.17.1
torch==1.12.1
tqdm==4.64.1
typing_extensions==4.4.0
tzdata==2022.4
whitenoise==6.2.0
import numpy as np
import random
import json
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from nltk_utils import bag_of_words, tokenize, stem
from model import NeuralNet
with open('intents.json', 'r') as f:
intents = json.load(f)
all_words = []
tags = []
xy = []
# loop through each sentence in our intents patterns
for intent in intents['intents']:
tag = intent['tag']
# add to tag list
tags.append(tag)
for pattern in intent['patterns']:
# tokenize each word in the sentence
w = tokenize(pattern)
# add to our words list
all_words.extend(w)
# add to xy pair
xy.append((w, tag))
# stem and lower each word
ignore_words = ['?', '.', '!']
all_words = [stem(w) for w in all_words if w not in ignore_words]
# remove duplicates and sort
all_words = sorted(set(all_words))
tags = sorted(set(tags))
print(len(xy), "patterns")
print(len(tags), "tags:", tags)
print(len(all_words), "unique stemmed words:", all_words)
# create training data
X_train = []
y_train = []
for (pattern_sentence, tag) in xy:
# X: bag of words for each pattern_sentence
bag = bag_of_words(pattern_sentence, all_words)
X_train.append(bag)
# y: PyTorch CrossEntropyLoss needs only class labels, not one-hot
label = tags.index(tag)
y_train.append(label)
X_train = np.array(X_train)
y_train = np.array(y_train)
# Hyper-parameters
num_epochs = 2000
batch_size = 8
learning_rate = 0.001
input_size = len(X_train[0])
hidden_size = 8
output_size = len(tags)
print(input_size, output_size)
class ChatDataset(Dataset):
def __init__(self):
self.n_samples = len(X_train)
self.x_data = X_train
self.y_data = y_train
# support indexing such that dataset[i] can be used to get i-th sample
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
# we can call len(dataset) to return the size
def __len__(self):
return self.n_samples
dataset = ChatDataset()
train_loader = DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=True,
num_workers=0)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = NeuralNet(input_size, hidden_size, output_size).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Train the model
for epoch in range(num_epochs):
for (words, labels) in train_loader:
words = words.to(device)
labels = labels.to(dtype=torch.long).to(device)
# Forward pass
outputs = model(words)
# if y would be one-hot, we must apply
# labels = torch.max(labels, 1)[1]
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch + 1) % 100 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
print(f'final loss: {loss.item():.4f}')
data = {
"model_state": model.state_dict(),
"input_size": input_size,
"hidden_size": hidden_size,
"output_size": output_size,
"all_words": all_words,
"tags": tags
}
FILE = "model.h5"
torch.save(data, FILE)
print(f'training complete. file saved to {FILE}')
{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":173470,"status":"ok","timestamp":1660462996396,"user":{"displayName":"Sachindu Gimhana","userId":"13341145685503871291"},"user_tz":-330},"id":"0V8EjOkXGTFb","outputId":"5524a27d-8f30-4905-dc82-b49d25e19bda"},"outputs":[],"source":["!pip install tflearn\n","!pip install textblob\n","\n","import nltk\n","nltk.download('punkt')\n","from nltk.stem.lancaster import LancasterStemmer\n","stemmer = LancasterStemmer()\n","from textblob import TextBlob\n","import numpy\n","import tflearn\n","import tensorflow\n","import random\n","import json\n","import pickle\n","import matplotlib.pyplot as plt\n","\n","with open(\"intents.json\") as file:\n"," data = json.load(file)\n","\n","try:\n"," with open(\"data.pickle\", \"rb\") as f:\n"," words, labels, training, output = pickle.load(f)\n","except:\n"," words = []\n"," labels = []\n"," docs_x = []\n"," docs_y = []\n","\n"," for intent in data[\"intents\"]:\n"," for pattern in intent[\"patterns\"]:\n"," wrds = nltk.word_tokenize(pattern)\n"," words.extend(wrds)\n"," docs_x.append(wrds)\n"," docs_y.append(intent[\"tag\"])\n","\n"," if intent[\"tag\"] not in labels:\n"," labels.append(intent[\"tag\"])\n","\n"," words = [stemmer.stem(w.lower()) for w in words if w != \"?\"]\n"," words = sorted(list(set(words)))\n","\n"," labels = sorted(labels)\n","\n"," training = []\n"," output = []\n","\n"," out_empty = [0 for _ in range(len(labels))]\n","\n"," for x, doc in enumerate(docs_x):\n"," bag = []\n","\n"," wrds = [stemmer.stem(w.lower()) for w in doc]\n","\n"," for w in words:\n"," if w in wrds:\n"," bag.append(1)\n"," else:\n"," bag.append(0)\n","\n"," output_row = out_empty[:]\n"," output_row[labels.index(docs_y[x])] = 1\n","\n"," training.append(bag)\n"," output.append(output_row)\n","\n","\n"," training = numpy.array(training)\n"," output = numpy.array(output)\n","\n"," with open(\"data.pickle\", \"wb\") as f:\n"," pickle.dump((words, labels, training, output), f)\n","\n","from tensorflow.python.framework import ops\n","ops.reset_default_graph()\n","\n","net = tflearn.input_data(shape=[None, len(training[0])])\n","net = tflearn.fully_connected(net, 8)\n","net = tflearn.fully_connected(net, 8)\n","net = tflearn.fully_connected(net, len(output[0]), activation=\"softmax\")\n","net = tflearn.regression(net)\n","\n","model = tflearn.DNN(net)\n","\n","try:\n"," model.load(\"model.tflearn\")\n","except:\n"," train = model.fit(training, output, n_epoch=2000, batch_size=8, show_metric=True)\n"," model.save(\"model.tflearn\")"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"o5kZkho2SH1n"},"outputs":[],"source":["def bag_of_words(s, words):\n"," bag = [0 for _ in range(len(words))]\n","\n"," s_words = nltk.word_tokenize(s)\n"," s_words = [stemmer.stem(word.lower()) for word in s_words]\n","\n"," for se in s_words:\n"," for i, w in enumerate(words):\n"," if w == se:\n"," bag[i] = 1\n"," \n"," return numpy.array(bag)\n"," \n","def chat():\n"," print(\"Welcome to Canis Care VetBot (type quit to stop)!\")\n"," while True:\n"," inp = input(\"You: \")\n"," if inp.lower() == \"quit\":\n"," break\n"," \n"," #getting sentiment analysis value\n"," edu=TextBlob(inp)\n"," sa=edu.sentiment.polarity\n"," print(\"Sentiment Value is : \",sa) \n","\n"," results = model.predict([bag_of_words(inp, words)])[0]\n"," results_index = numpy.argmax(results)\n"," tag = labels[results_index]\n","\n"," if results[results_index] > 0.7:\n"," for tg in data[\"intents\"]:\n"," if tg['tag'] == tag:\n"," responses = tg['bot_response']\n","\n"," print(random.choice(responses))\n","\n"," else:\n"," print(\"I didn't get that, try again.\")\n","\n","chat()"]}],"metadata":{"colab":{"authorship_tag":"ABX9TyMO0aMAMOJF7Y+oufnfsl+s","collapsed_sections":[],"name":"Vet_Bot.ipynb","provenance":[]},"kernelspec":{"display_name":"Python 3","name":"python3"},"language_info":{"name":"python"}},"nbformat":4,"nbformat_minor":0}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment