Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
2
240
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
2022-240
240
Commits
16228ea8
Commit
16228ea8
authored
Sep 03, 2022
by
Malsha Rathnasiri
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
minor changes
parent
b4c8f105
Changes
11
Hide whitespace changes
Inline
Side-by-side
Showing
11 changed files
with
337 additions
and
257 deletions
+337
-257
MobileApp/api/api.js
MobileApp/api/api.js
+28
-5
MobileApp/api/constants.js
MobileApp/api/constants.js
+3
-1
MobileApp/screens/TabOneScreen.jsx
MobileApp/screens/TabOneScreen.jsx
+42
-22
backend/backend/cms/model/predict.py
backend/backend/cms/model/predict.py
+33
-33
backend/backend/cms/model/train.py
backend/backend/cms/model/train.py
+166
-166
backend/backend/cms/serializers.py
backend/backend/cms/serializers.py
+1
-1
backend/backend/cms/views.py
backend/backend/cms/views.py
+40
-11
backend/backend/settings.py
backend/backend/settings.py
+21
-18
backend/backend/urls.py
backend/backend/urls.py
+3
-0
backend/db.sqlite3
backend/db.sqlite3
+0
-0
backend/output.m4a
backend/output.m4a
+0
-0
No files found.
MobileApp/api/api.js
View file @
16228ea8
import
{
BACKEND_URL
}
from
"
./constants
"
import
AsyncStorage
from
'
@react-native-async-storage/async-storage
'
;
import
{
useNavigation
}
from
"
@react-navigation/native
"
;
import
axios
from
"
axios
"
;
//"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIiwiZXhwIjoxNjYxMzU2NDA5LCJpYXQiOjE2NjAxNDY4MDksImp0aSI6ImFhMTljMmY2ZDNkMzRiNDdhZmZmM2FjMzVjNzI4MWJhIiwidXNlcl9pZCI6MX0.IVzibo_Rf2xzoT1J5o1L3zwu3mco6ODcNPC-7imu3Lo"
...
...
@@ -8,21 +11,41 @@ import { useNavigation } from "@react-navigation/native";
const
getHeaders
=
async
()
=>
{
var
token
=
await
AsyncStorage
.
getItem
(
'
access_token
'
)
return
new
Headers
({
authorization
:
`Bearer
${
token
}
`
,
'
Content-Type
'
:
'
application/json
'
})
return
{
Authorization
:
`JWT
${
token
}
`
,
'
Content-Type
'
:
'
application/json
'
,
}
}
export
const
create
=
async
(
resource
,
values
)
=>
{
const
headers
=
await
getHeaders
()
console
.
log
({
headers
}
)
const
headers
=
getHeaders
()
console
.
log
({
headers
},
'
create
'
)
try
{
return
fetch
(
`
${
BACKEND_URL
}
/
${
resource
}
/`
,
{
method
:
'
POST
'
,
body
:
JSON
.
stringify
(
values
),
headers
})
// return Axios.post(`${BACKEND_URL}/${resource}/`, values)
}
catch
(
e
)
{
console
.
log
(
e
)
}
}
export
const
getList
=
async
(
resource
)
=>
{
export
const
getList
=
async
(
resource
,
params
)
=>
{
const
url
=
new
URL
(
`
${
BACKEND_URL
}
/
${
resource
}
/`
)
if
(
params
)
{
Object
.
keys
(
params
).
map
(
key
=>
{
url
.
searchParams
.
append
(
key
,
params
[
key
])
})
}
const
headers
=
await
getHeaders
()
console
.
log
(
headers
,
'
getList
'
)
return
fetch
(
url
,
{
method
:
'
GET
'
,
headers
:
headers
})
return
axios
.
get
(
url
.
toString
(),
null
,
{
headers
})
}
export
const
getOne
=
async
(
resource
,
id
)
=>
{
const
url
=
new
URL
(
`
${
BACKEND_URL
}
/
${
resource
}
/
${
id
}
/`
)
const
headers
=
await
getHeaders
()
return
fetch
(
`
${
BACKEND_URL
}
/
${
resource
}
/`
,
{
method
:
'
GET
'
,
headers
:
headers
})
console
.
log
(
headers
,
'
getONe
'
)
return
fetch
(
url
,
{
method
:
"
GET
"
,
headers
:
headers
})
}
\ No newline at end of file
MobileApp/api/constants.js
View file @
16228ea8
// export const BACKEND_URL = "http://192.168.8.103:8000"
export
const
BACKEND_ADDRESS
=
"
dcf1-2402-d000-a500-101a-cd9c-120b-91b8-7774.in.ngrok.io
"
import
{
Platform
}
from
'
react-native
'
export
const
BACKEND_ADDRESS
=
Platform
.
OS
==
'
web
'
?
"
127.0.0.1:8000
"
:
"
93e8-2401-dd00-10-20-e170-748c-b618-e8f5.in.ngrok.io
"
export
const
BACKEND_URL
=
`http://
${
BACKEND_ADDRESS
}
`
MobileApp/screens/TabOneScreen.jsx
View file @
16228ea8
...
...
@@ -6,7 +6,7 @@ import _ from 'lodash'
import
EditScreenInfo
from
'
../components/EditScreenInfo
'
;
// import { Text, View } from '../components/Themed';
import
{
RootTabScreenProps
}
from
'
../types
'
;
import
{
create
,
getList
}
from
'
../api/api
'
;
import
{
create
,
getList
,
getOne
}
from
'
../api/api
'
;
import
{
BACKEND_ADDRESS
}
from
'
../api/constants
'
;
import
Ionicons
from
'
@expo/vector-icons/Ionicons
'
;
import
{
CONVO_DEFAULT_ICON_COLOR
,
styles
}
from
'
../util/styles
'
;
...
...
@@ -37,7 +37,8 @@ export default function ChatScreen({ navigation }) {
const
[
detectedText
,
setDetectedText
]
=
useState
(
""
)
const
[
playinId
,
setPlayingId
]
=
useState
(
3
)
const
[
chatDetails
,
setChatDetails
]
=
useState
({
from_user
:
1
,
to_user
:
2
,
conversation_id
:
1
})
const
[
chatDetails
,
setChatDetails
]
=
useState
()
const
[
chats
,
setChats
]
=
useState
([])
const
[
input
,
setInput
]
=
useState
(
'
test
'
)
const
[
loading
,
setLoading
]
=
useState
(
true
)
...
...
@@ -59,12 +60,15 @@ export default function ChatScreen({ navigation }) {
console
.
log
({
chats
})
}
useEffect
(()
=>
{
if
(
chatDetails
)
{
loadChats
();
setLoading
(
false
)
}
},
[
chatDetails
])
// const ws = new WebSocket(`ws://${BACKEND_ADDRESS}/chatSocket/`)
useEffect
(()
=>
{
loadChats
()
loadChat
Detail
s
()
// startWebsocket()
// loadSampleChats()
setLoading
(
false
)
},
[])
// const startWebsocket = () => {
...
...
@@ -87,12 +91,22 @@ export default function ChatScreen({ navigation }) {
// }
const
loadChatDetails
=
async
()
=>
{
await
getOne
(
'
conversations
'
,
1
).
then
(
res
=>
{
return
res
.
json
()
}).
then
(
res
=>
{
console
.
log
(
res
)
setChatDetails
(
res
)
})
}
const
loadChats
=
async
()
=>
{
await
getList
(
'
chats
'
).
then
(
res
=>
{
return
res
.
json
()
}).
then
(
res
=>
{
// console.log(res
)
const
chats
=
res
.
results
console
.
log
(
"
load chats
"
)
const
chats
=
res
.
results
||
[]
const
sections
=
[...
new
Set
(
chats
.
map
(
chat
=>
new
Date
(
chat
.
timestamp
).
setHours
(
0
,
0
,
0
,
0
)))];
const
sectionChats
=
sections
.
map
(
section
=>
({
title
:
section
,
data
:
chats
.
filter
(
chat
=>
new
Date
(
chat
.
timestamp
).
setHours
(
0
,
0
,
0
,
0
)
==
section
)
}))
setChats
(
sectionChats
)
...
...
@@ -103,16 +117,16 @@ export default function ChatScreen({ navigation }) {
const
onSendPress
=
()
=>
{
try
{
create
(
'
chats
'
,
{
message
:
input
,
from_user
:
chatDetails
.
from_user
,
to_user
:
chatDetails
.
to_user
,
conversation
:
chatDetails
.
conversation_id
}).
then
(
response
=>
{
// console.log(response)
})
setLoading
(
true
)
setInput
(
''
)
loadChats
()
}
catch
(
e
)
{
Toast
.
show
({
title
:
'
Error sending message. try again!
'
,
...
ERROR_TOAST_PROPS
})
}
create
(
'
chats
'
,
{
message
:
input
,
from_user
:
chatDetails
.
from_user
,
to_user
:
chatDetails
.
to_user
,
conversation
:
chatDetails
.
conversation_id
}).
then
(
response
=>
{
// console.log(response)
})
setLoading
(
true
)
setInput
(
''
)
loadChats
()
}
catch
(
e
)
{
Toast
.
show
({
title
:
'
Error sending message. try again!
'
,
...
ERROR_TOAST_PROPS
})
}
}
return
(
...
...
@@ -130,12 +144,18 @@ export default function ChatScreen({ navigation }) {
{
loading
?
<
ActivityIndicator
/>
:
<
SectionList
refreshing=
{
loading
}
onRefresh=
{
()
=>
loadChats
()
}
inverted=
{
true
}
onRefresh=
{
()
=>
{
// loadChatDetails() //remove
loadChats
()
}
}
inverted
sections=
{
chats
}
keyExtractor=
{
(
item
,
index
)
=>
item
+
index
}
renderItem=
{
({
item
})
=>
{
// console.log(
{
item
})
const
timeString
=
new
Date
(
item
.
timestamp
).
toLocaleTimeString
()
const
time
=
timeString
.
slice
(
-
11
,
-
6
)
+
"
"
+
timeString
.
slice
(
-
2
)
return
(
<
View
style=
{
{
margin
:
5
,
padding
:
5
}
}
><
Text
style=
{
[{
textAlign
:
chatDetails
.
from_user
==
item
.
from_user
?
'
right
'
:
'
left
'
,
backgroundColor
:
chatDetails
.
from_user
==
item
.
from_user
?
'
lightgray
'
:
'
#FFDE03
'
,
borderRadius
:
5
,
padding
:
5
},
...
...
@@ -143,8 +163,8 @@ export default function ChatScreen({ navigation }) {
]
}
key=
{
item
.
timestamp
}
>
{
item
.
message
}
</
Text
>
<
View
style=
{
{
flex
:
1
,
flexDirection
:
chatDetails
.
from_user
==
item
.
from_user
?
'
row-reverse
'
:
'
row
'
,
textAlign
:
chatDetails
.
from_user
==
item
.
from_user
?
'
right
'
:
'
left
'
}
}
>
<
Text
style=
{
{
textAlign
:
chatDetails
.
from_user
==
item
.
from_user
?
'
right
'
:
'
left
'
,
color
:
'
gray
'
,
fontSize
:
11
}
}
>
{
new
Date
(
item
.
timestamp
).
toLocaleTimeString
()
}
</
Text
>
{
item
.
is_detected
&&
<
Ionicons
name=
"mic"
size=
{
15
}
color=
{
CONVO_DEFAULT_ICON_COLOR
}
/>
}
<
Text
style=
{
{
textAlign
:
chatDetails
.
from_user
==
item
.
from_user
?
'
right
'
:
'
left
'
,
color
:
'
gray
'
,
fontSize
:
11
}
}
>
{
time
}
</
Text
>
{
item
.
is_detected
&&
<
Ionicons
name=
"mic"
size=
{
15
}
color=
{
CONVO_DEFAULT_ICON_COLOR
}
/>
}
{
/* {chatDetails.to_user == item.from_user && item.id != playinId && <Ionicons name="play" size={15} style={styles.chatIcon} />}
{chatDetails.to_user == item.from_user && item.id == playinId && <Ionicons name="pause" size={15} style={styles.chatIcon} />} */
}
{
chatDetails
.
to_user
==
item
.
from_user
&&
<
PlayMessage
message=
{
item
.
message
}
/>
}
...
...
@@ -200,11 +220,11 @@ export default function ChatScreen({ navigation }) {
</
View
>
<
View
style=
{
{
flex
:
0.075
,
padding
:
0
,
backgroundColor
:
'
white
'
}
}
>
<
View
style=
{
{
flex
:
0.075
,
padding
:
0
,
backgroundColor
:
'
white
'
}
}
>
<
View
style=
{
{
flexDirection
:
'
row
'
,
display
:
'
flex
'
,
height
:
'
100%
'
}
}
>
<
View
style=
{
{
flex
:
0.8
,
height
:
'
100%
'
,
flexDirection
:
'
column-reverse
'
}
}
>
<
TextInput
style=
{
{
borderWidth
:
2
,
borderColor
:
'
gray
'
,
color
:
'
black
'
,
marginHorizontal
:
5
,
paddingHorizontal
:
10
,
borderRadius
:
5
}
}
style=
{
{
borderWidth
:
2
,
borderColor
:
'
gray
'
,
color
:
'
black
'
,
marginHorizontal
:
5
,
paddingHorizontal
:
10
,
borderRadius
:
5
}
}
defaultValue=
{
input
}
onChange=
{
(
e
)
=>
setInput
(
e
.
target
.
value
)
}
></
TextInput
>
</
View
>
...
...
backend/backend/cms/model/predict.py
View file @
16228ea8
import
pickle
from
keras.models
import
load_model
#
import pickle
#
from keras.models import load_model
import
numpy
as
np
#
import numpy as np
import
IPython.display
as
ipd
#
import IPython.display as ipd
import
random
#
import random
from
sklearn.model_selection
import
train_test_split
from
sklearn.preprocessing
import
LabelEncoder
#
from sklearn.model_selection import train_test_split
#
from sklearn.preprocessing import LabelEncoder
def
predict
(
samples
):
model
=
load_model
(
r'./best_model_final.hdf5'
)
#
def predict(samples):
#
model=load_model(r'./best_model_final.hdf5')
f1
=
open
(
'all_label.txt'
,
'rb'
)
all_label
=
pickle
.
load
(
f1
)
print
(
'loaded labels'
)
#
f1 = open('all_label.txt', 'rb')
#
all_label = pickle.load(f1)
#
print('loaded labels')
# f2 = open('all_waves_file.txt', 'rb')
# all_wave = pickle.load(f2)
# print('loaded waves')
#
# f2 = open('all_waves_file.txt', 'rb')
#
# all_wave = pickle.load(f2)
#
# print('loaded waves')
le
=
LabelEncoder
()
y
=
le
.
fit_transform
(
all_label
)
classes
=
list
(
le
.
classes_
)
#
le = LabelEncoder()
#
y = le.fit_transform(all_label)
#
classes = list(le.classes_)
# train_data_file = open("train_data_file.txt", 'rb')
# [x_tr, x_val, y_tr, y_val] = np.load(train_data_file, allow_pickle=True)
# train_data_file.close()
#
# train_data_file = open("train_data_file.txt", 'rb')
#
# [x_tr, x_val, y_tr, y_val] = np.load(train_data_file, allow_pickle=True)
#
# train_data_file.close()
def
predictSamples
(
audio
):
prob
=
model
.
predict
(
audio
.
reshape
(
1
,
8000
,
1
))
index
=
np
.
argmax
(
prob
[
0
])
return
classes
[
index
]
#
def predictSamples(audio):
#
prob=model.predict(audio.reshape(1,8000,1))
#
index=np.argmax(prob[0])
#
return classes[index]
# index=random.randint(0,len(x_val)-1)
# samples=x_val[index].ravel()
print
(
samples
)
# print("Audio:",classes[np.argmax(y_val[index])])
ipd
.
Audio
(
samples
,
rate
=
8000
)
#
# index=random.randint(0,len(x_val)-1)
#
# samples=x_val[index].ravel()
#
print(samples)
#
# print("Audio:",classes[np.argmax(y_val[index])])
#
ipd.Audio(samples, rate=8000)
result
=
predictSamples
(
samples
)
#
result = predictSamples(samples)
print
(
"Text:"
,
result
)
#
print("Text:",result)
return
result
\ No newline at end of file
# return result
\ No newline at end of file
backend/backend/cms/model/train.py
View file @
16228ea8
import
pickle
from
matplotlib
import
pyplot
import
os
import
librosa
import
IPython.display
as
ipd
import
matplotlib.pyplot
as
plt
import
numpy
as
np
from
scipy.io
import
wavfile
import
warnings
#
import pickle
#
from matplotlib import pyplot
#
import os
#
import librosa
#
import IPython.display as ipd
#
import matplotlib.pyplot as plt
#
import numpy as np
#
from scipy.io import wavfile
#
import warnings
from
sklearn.preprocessing
import
LabelEncoder
#
from sklearn.preprocessing import LabelEncoder
from
keras.utils
import
np_utils
#
from keras.utils import np_utils
from
sklearn.model_selection
import
train_test_split
from
keras.layers
import
Dense
,
Dropout
,
Flatten
,
Conv1D
,
Input
,
MaxPooling1D
from
keras.models
import
Model
from
keras.callbacks
import
EarlyStopping
,
ModelCheckpoint
from
keras
import
backend
as
K
K
.
clear_session
()
warnings
.
filterwarnings
(
"ignore"
)
# os.listdir('../../../data/')
classes
=
[
'down'
,
'go'
,
'left'
,
'no'
,
'off'
,
'on'
,
'right'
,
'stop'
,
'up'
,
'yes'
]
def
train
():
print
(
'1'
)
train_audio_path
=
r'./backend/data/train/train/audio/'
samples
,
sample_rate
=
librosa
.
load
(
train_audio_path
+
'yes/0a7c2a8d_nohash_0.wav'
,
sr
=
16000
)
# fig = plt.figure(figsize=(14, 8))
# ax1 = fig.add_subplot(211)
# ax1.set_title('Raw wave of ' + r'../input/train/audio/yes/0a7c2a8d_nohash_0.wav')
# ax1.set_xlabel('time')
# ax1.set_ylabel('Amplitude')
# ax1.plot(np.linspace(0, sample_rate/len(samples), sample_rate), samples)
ipd
.
Audio
(
samples
,
rate
=
sample_rate
)
# from sklearn.model_selection import train_test_split
# from keras.layers import Dense, Dropout, Flatten, Conv1D, Input, MaxPooling1D
# from keras.models import Model
# from keras.callbacks import EarlyStopping, ModelCheckpoint
# from keras import backend as K
# K.clear_session()
# warnings.filterwarnings("ignore")
# # os.listdir('../../../data/')
# classes = ['down', 'go', 'left', 'no', 'off',
# 'on', 'right', 'stop', 'up', 'yes']
# def train():
# print('1')
# train_audio_path = r'./backend/data/train/train/audio/'
# samples, sample_rate = librosa.load(
# train_audio_path+'yes/0a7c2a8d_nohash_0.wav', sr=16000)
# # fig = plt.figure(figsize=(14, 8))
# # ax1 = fig.add_subplot(211)
# # ax1.set_title('Raw wave of ' + r'../input/train/audio/yes/0a7c2a8d_nohash_0.wav')
# # ax1.set_xlabel('time')
# # ax1.set_ylabel('Amplitude')
# # ax1.plot(np.linspace(0, sample_rate/len(samples), sample_rate), samples)
print
(
sample_rate
)
# ipd.Audio(samples, rate=
sample_rate)
samples
=
librosa
.
resample
(
samples
,
sample_rate
,
8000
)
ipd
.
Audio
(
samples
,
rate
=
8000
)
# print(sample_rate)
labels
=
os
.
listdir
(
train_audio_path
)
# samples = librosa.resample(samples, sample_rate, 8000)
# ipd.Audio(samples, rate=8000)
# find count of each label and plot bar graph
no_of_recordings
=
[]
for
label
in
labels
:
waves
=
[
f
for
f
in
os
.
listdir
(
train_audio_path
+
'/'
+
label
)
if
f
.
endswith
(
'.wav'
)]
no_of_recordings
.
append
(
len
(
waves
))
# labels = os.listdir(train_audio_path)
# plot
# plt.figure(figsize=(30,5))
index
=
np
.
arange
(
len
(
labels
))
# plt.bar(index, no_of_recordings)
# plt.xlabel('Commands', fontsize=12)
# plt.ylabel('No of recordings', fontsize=12)
# plt.xticks(index, labels, fontsize=15, rotation=60)
# plt.title('No. of recordings for each command')
# plt.show()
# # find count of each label and plot bar graph
# no_of_recordings = []
# for label in labels:
# waves = [f for f in os.listdir(
# train_audio_path + '/' + label) if f.endswith('.wav')]
# no_of_recordings.append(len(waves))
print
(
'2'
)
# # plot
# # plt.figure(figsize=(30,5))
# index = np.arange(len(labels))
# # plt.bar(index, no_of_recordings)
# # plt.xlabel('Commands', fontsize=12)
# # plt.ylabel('No of recordings', fontsize=12)
# # plt.xticks(index, labels, fontsize=15, rotation=60)
# # plt.title('No. of recordings for each command')
# # plt.show()
labels
=
[
"yes"
,
"no"
,
"up"
,
"down"
,
"left"
,
"right"
,
"on"
,
"off"
,
"stop"
,
"go"
]
# print('2')
# labels_file = open('./labels_file.bin', 'wb+')
# pickle.dump(obj=labels, file=labels_file)
# labels_file.close()
# labels = ["yes", "no", "up", "down", "left",
# "right", "on", "off", "stop", "go"]
# # file = open('./labels_file.bin', 'rb')
# # dict = pickle.load(file)
# # print('loaded')
# # print(dict)
# # print('fdnasf')
# # labels_file = open('./labels_file.bin', 'wb+')
# # pickle.dump(obj=labels, file=labels_file)
# # labels_file.close()
duration_of_recordings
=
[]
for
label
in
labels
:
print
(
'2.1'
,
label
)
waves
=
[
f
for
f
in
os
.
listdir
(
train_audio_path
+
'/'
+
label
)
if
f
.
endswith
(
'.wav'
)]
for
wav
in
waves
:
sample_rate
,
samples
=
wavfile
.
read
(
train_audio_path
+
'/'
+
label
+
'/'
+
wav
)
duration_of_recordings
.
append
(
float
(
len
(
samples
)
/
sample_rate
))
# # # file = open('./labels_file.bin', 'rb')
# # # dict = pickle.load(file)
# # # print('loaded')
# # # print(dict)
# # # print('fdnasf')
plt
.
hist
(
np
.
array
(
duration_of_recordings
))
# duration_of_recordings = []
# for label in labels:
# print('2.1', label)
# waves = [f for f in os.listdir(
# train_audio_path + '/' + label) if f.endswith('.wav')]
# for wav in waves:
# sample_rate, samples = wavfile.read(
# train_audio_path + '/' + label + '/' + wav)
# duration_of_recordings.append(float(len(samples)/sample_rate))
train_audio_path
=
r'./backend/data/train/train/audio/'
# plt.hist(np.array(duration_of_recordings))
all_wave
=
[]
all_label
=
[]
# train_audio_path = r'./backend/data/train/train/audio/'
f1
=
open
(
'all_label.txt'
,
'rb'
)
all_label
=
pickle
.
load
(
f1
)
# all_wave = []
# all_label = []
f2
=
open
(
'all_waves_file
.txt'
,
'rb'
)
all_wave
=
pickle
.
load
(
f2
)
# f1 = open('all_label
.txt', 'rb')
# all_label = pickle.load(f1
)
if
(
all_wave
and
all_label
):
print
(
'loaded labels and waves'
)
else
:
print
(
'Creating labels and waves files'
)
for
label
in
labels
:
print
(
label
)
waves
=
[
f
for
f
in
os
.
listdir
(
train_audio_path
+
'/'
+
label
)
if
f
.
endswith
(
'.wav'
)]
for
wav
in
waves
:
samples
,
sample_rate
=
librosa
.
load
(
train_audio_path
+
'/'
+
label
+
'/'
+
wav
,
sr
=
16000
)
samples
=
librosa
.
resample
(
samples
,
sample_rate
,
8000
)
if
(
len
(
samples
)
==
8000
):
all_wave
.
append
(
samples
)
all_label
.
append
(
label
)
# f2 = open('all_waves_file.txt', 'rb')
# all_wave = pickle.load(f2)
# print('3')
# if(all_wave and all_label):
# print('loaded labels and waves')
# else:
# print('Creating labels and waves files')
# for label in labels:
# print(label)
# waves = [f for f in os.listdir(
# train_audio_path + '/' + label) if f.endswith('.wav')]
# for wav in waves:
# samples, sample_rate = librosa.load(
# train_audio_path + '/' + label + '/' + wav, sr=16000)
# samples = librosa.resample(samples, sample_rate, 8000)
# if(len(samples) == 8000):
# all_wave.append(samples)
# all_label.append(label)
all_labels_file
=
open
(
'all_label.txt'
,
'wb+'
)
pickle
.
dump
(
file
=
all_labels_file
,
obj
=
all_label
)
all_labels_file
.
close
()
# # print('3')
return
False
# all_labels_file = open('all_label.txt', 'wb+')
# pickle.dump(file=all_labels_file, obj=all_label)
# all_labels_file.close()
all_waves_file
=
open
(
'all_waves_file.txt'
,
'wb+'
)
pickle
.
dump
(
file
=
all_waves_file
,
obj
=
all_wave
)
all_waves_file
.
close
()
print
(
'Done: creating labels and waves files'
)
# all_waves_file = open('all_waves_file.txt', 'wb+')
# pickle.dump(file=all_waves_file, obj=all_wave)
# all_waves_file.close()
return
False
le
=
LabelEncoder
()
y
=
le
.
fit_transform
(
all_label
)
classes
=
list
(
le
.
classes_
)
# print('Done: creating labels and waves files')
print
(
'4'
)
y
=
np_utils
.
to_categorical
(
y
,
num_classes
=
len
(
labels
))
# le = LabelEncoder()
# y = le.fit_transform(all_label)
# classes = list(le.classes_)
all_wave
=
np
.
array
(
all_wave
)
.
reshape
(
-
1
,
8000
,
1
)
# print('4'
)
x_tr
,
x_val
,
y_tr
,
y_val
=
train_test_split
(
np
.
array
(
all_wave
),
np
.
array
(
y
),
stratify
=
y
,
test_size
=
0.2
,
random_state
=
777
,
shuffle
=
True
)
# y = np_utils.to_categorical(y, num_classes=len(labels))
train_data_file
=
open
(
'train_data_file.txt'
,
'wb+'
)
np
.
save
(
file
=
train_data_file
,
arr
=
np
.
array
([
x_tr
,
x_val
,
y_tr
,
y_val
]))
train_data_file
.
close
()
# all_wave = np.array(all_wave).reshape(-1, 8000, 1)
inputs
=
Input
(
shape
=
(
8000
,
1
))
# x_tr, x_val, y_tr, y_val = train_test_split(np.array(all_wave), np.array(
# y), stratify=y, test_size=0.2, random_state=777, shuffle=True)
# First Conv1D layer
conv
=
Conv1D
(
8
,
13
,
padding
=
'valid'
,
activation
=
'relu'
,
strides
=
1
)(
inputs
)
conv
=
MaxPooling1D
(
3
)(
conv
)
conv
=
Dropout
(
0.3
)(
conv
)
# train_data_file = open('train_data_file.txt', 'wb+')
# np.save(file=train_data_file, arr=np.array([x_tr, x_val, y_tr, y_val]))
# train_data_file.close()
# Second Conv1D layer
conv
=
Conv1D
(
16
,
11
,
padding
=
'valid'
,
activation
=
'relu'
,
strides
=
1
)(
conv
)
conv
=
MaxPooling1D
(
3
)(
conv
)
conv
=
Dropout
(
0.3
)(
conv
)
# inputs = Input(shape=(8000, 1))
# Third
Conv1D layer
conv
=
Conv1D
(
32
,
9
,
padding
=
'valid'
,
activation
=
'relu'
,
strides
=
1
)(
conv
)
conv
=
MaxPooling1D
(
3
)(
conv
)
conv
=
Dropout
(
0.3
)(
conv
)
# # First
Conv1D layer
# conv = Conv1D(8, 13, padding='valid', activation='relu', strides=1)(inputs
)
#
conv = MaxPooling1D(3)(conv)
#
conv = Dropout(0.3)(conv)
# Fourth
Conv1D layer
conv
=
Conv1D
(
64
,
7
,
padding
=
'valid'
,
activation
=
'relu'
,
strides
=
1
)(
conv
)
conv
=
MaxPooling1D
(
3
)(
conv
)
conv
=
Dropout
(
0.3
)(
conv
)
# # Second
Conv1D layer
# conv = Conv1D(16, 11
, padding='valid', activation='relu', strides=1)(conv)
#
conv = MaxPooling1D(3)(conv)
#
conv = Dropout(0.3)(conv)
# Flatten layer
conv
=
Flatten
()(
conv
)
# # Third Conv1D layer
# conv = Conv1D(32, 9, padding='valid', activation='relu', strides=1)(conv)
# conv = MaxPooling1D(3)(conv)
# conv = Dropout(0.3)(conv)
# Dense Layer 1
conv
=
Dense
(
256
,
activation
=
'relu'
)(
conv
)
conv
=
Dropout
(
0.3
)(
conv
)
# # Fourth Conv1D layer
# conv = Conv1D(64, 7, padding='valid', activation='relu', strides=1)(conv)
# conv = MaxPooling1D(3)(conv)
# conv = Dropout(0.3)(conv)
# Dense Layer 2
conv
=
Dense
(
128
,
activation
=
'relu'
)(
conv
)
conv
=
Dropout
(
0.3
)(
conv
)
# # Flatten layer
# conv = Flatten()(conv)
outputs
=
Dense
(
len
(
labels
),
activation
=
'softmax'
)(
conv
)
# # Dense Layer 1
# conv = Dense(256, activation='relu')(conv)
# conv = Dropout(0.3)(conv)
model
=
Model
(
inputs
,
outputs
)
model
.
summary
()
# # Dense Layer 2
# conv = Dense(128, activation='relu')(conv)
# conv = Dropout(0.3)(conv)
model
.
compile
(
loss
=
'categorical_crossentropy'
,
optimizer
=
'adam'
,
metrics
=
[
'accuracy'
])
# outputs = Dense(len(labels), activation='softmax')(conv)
es
=
EarlyStopping
(
monitor
=
'val_loss'
,
mode
=
'min'
,
verbose
=
1
,
patience
=
10
,
min_delta
=
0.0001
)
mc
=
ModelCheckpoint
(
'best_model.hdf5'
,
monitor
=
'val_accuracy'
,
verbose
=
1
,
save_best_only
=
True
,
mode
=
'max'
)
# model = Model(inputs, outputs)
# model.summary()
history
=
model
.
fit
(
x_tr
,
y_tr
,
epochs
=
100
,
callbacks
=
[
es
,
mc
],
batch_size
=
32
,
validation_data
=
(
x_val
,
y_val
)
)
# model.compile(loss='categorical_crossentropy',
# optimizer='adam', metrics=['accuracy']
)
# pyplot.plot(history.history['loss'], label='train')
# pyplot.plot(history.history['val_loss'], label='test')
# pyplot.legend()
# es = EarlyStopping(monitor='val_loss', mode='min',
# verbose=1, patience=10, min_delta=0.0001)
# mc = ModelCheckpoint('best_model.hdf5', monitor='val_accuracy',
# verbose=1, save_best_only=True, mode='max')
# pyplot.show()
# history = model.fit(x_tr, y_tr, epochs=100, callbacks=[
# es, mc], batch_size=32, validation_data=(x_val, y_val))
return
history
# # pyplot.plot(history.history['loss'], label='train')
# # pyplot.plot(history.history['val_loss'], label='test')
# # pyplot.legend()
# # pyplot.show()
# return history
backend/backend/cms/serializers.py
View file @
16228ea8
...
...
@@ -46,7 +46,7 @@ class MlModelSerializer(serializers.ModelSerializer):
'__all__'
)
class
ChatSerialier
(
serializers
.
ModelSerializer
):
class
ChatSeriali
z
er
(
serializers
.
ModelSerializer
):
class
Meta
:
model
=
Chat
fields
=
(
...
...
backend/backend/cms/views.py
View file @
16228ea8
from
http.client
import
HTTPResponse
from
lib2to3.pytree
import
convert
from
pyexpat
import
model
from
django.contrib.auth.models
import
User
,
Group
from
rest_framework
import
viewsets
from
rest_framework
import
permissions
from
backend.cms.serializers
import
MyTokenObtainPairSerializer
from
backend.cms.serializers
import
MlModelSerializer
,
ChatSerialier
,
ConversationSerializer
from
backend.cms.serializers
import
MlModelSerializer
,
ChatSeriali
z
er
,
ConversationSerializer
from
backend.cms.serializers
import
UserSerializer
,
GroupSerializer
from
rest_framework.decorators
import
action
from
rest_framework.response
import
Response
import
mimetypes
import
os
from
rest_framework.parsers
import
MultiPartParser
from
io
import
BytesIO
from
datetime
import
datetime
,
timedelta
import
librosa
from
django.db.models
import
Q
from
django.core.files.storage
import
FileSystemStorage
from
.models
import
Chat
,
Conversation
,
MlModel
from
rest_framework_simplejwt.views
import
TokenObtainPairView
from
.model.train
import
train
#
from .model.train import train
from
.model.predict
import
predict
#
from .model.predict import predict
from
pydub
import
AudioSegment
...
...
@@ -73,7 +71,7 @@ class MlModelViewSet(viewsets.ViewSet):
parser_classes
=
[
MultiPartParser
]
@
action
(
detail
=
False
)
def
runAction
(
*
args
,
**
kwargs
):
def
addChats
(
*
args
,
**
kwargs
):
admin
=
User
.
objects
.
get
(
username
=
'admin'
)
user2
=
User
.
objects
.
get
(
username
=
'user2'
)
...
...
@@ -172,16 +170,47 @@ class MlModelViewSet(viewsets.ViewSet):
# track.file.name = mp3_filename
# track.save()
results
=
predict
(
samples
)
results
=
{}
#
predict(samples)
print
(
results
)
return
Response
({
'success'
:
True
,
'result'
:
results
})
class
ChatViewSet
(
viewsets
.
ModelViewSet
):
queryset
=
Chat
.
objects
.
all
()
.
order_by
(
'-timestamp'
)
serializer_class
=
ChatSerialier
serializer_class
=
ChatSeriali
z
er
permission_classes
=
[
permissions
.
IsAuthenticated
]
@
action
(
methods
=
'POST'
,
detail
=
True
)
def
getChats
(
self
,
request
,
*
args
,
**
kwargs
):
chats
=
Chat
.
objects
.
filter
(
Q
(
from_user__user_id
=
request
.
user
.
id
)
|
Q
(
to_user__user_id
=
request
.
user
.
id
))
.
order_by
(
'-timestamp'
)
.
values
()
return
Response
({
chats
})
def
list
(
self
,
request
,
pk
=
None
):
if
pk
==
None
:
chats
=
Chat
.
objects
.
filter
(
Q
(
from_user_id
=
request
.
user
.
id
)
|
Q
(
to_user_id
=
request
.
user
.
id
))
else
:
chats
=
Chat
.
objects
.
get
(
id
=
pk
)
page
=
self
.
paginate_queryset
(
chats
)
if
page
is
not
None
:
serializer
=
self
.
get_serializer
(
page
,
many
=
True
)
return
self
.
get_paginated_response
(
serializer
.
data
)
serializer
=
self
.
get_serializer
(
page
,
many
=
True
)
result_set
=
serializer
.
data
return
Response
(
result_set
)
def
get_result_set
(
self
,
chats
):
result_set
=
ChatSerializer
(
chats
,
many
=
True
)
.
data
return
result_set
class
ConversationViewSet
(
viewsets
.
ModelViewSet
):
queryset
=
Conversation
.
objects
.
all
()
.
order_by
(
'id'
)
...
...
backend/backend/settings.py
View file @
16228ea8
...
...
@@ -46,14 +46,16 @@ INSTALLED_APPS = [
]
MIDDLEWARE
=
[
'django.middleware.security.SecurityMiddleware'
,
'django.contrib.sessions.middleware.SessionMiddleware'
,
'django.middleware.common.CommonMiddleware'
,
'django.middleware.csrf.CsrfViewMiddleware'
,
'django.contrib.auth.middleware.AuthenticationMiddleware'
,
'corsheaders.middleware.CorsMiddleware'
,
'django.contrib.messages.middleware.MessageMiddleware'
,
'django.middleware.clickjacking.XFrameOptionsMiddleware'
,
'corsheaders.middleware.CorsMiddleware'
,
]
ROOT_URLCONF
=
'backend.urls'
...
...
@@ -92,18 +94,18 @@ DATABASES = {
# https://docs.djangoproject.com/en/4.0/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS
=
[
{
'NAME'
:
'django.contrib.auth.password_validation.UserAttributeSimilarityValidator'
,
},
{
'NAME'
:
'django.contrib.auth.password_validation.MinimumLengthValidator'
,
},
{
'NAME'
:
'django.contrib.auth.password_validation.CommonPasswordValidator'
,
},
{
'NAME'
:
'django.contrib.auth.password_validation.NumericPasswordValidator'
,
},
#
{
#
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
#
},
#
{
#
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
#
},
#
{
#
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
#
},
#
{
#
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
#
},
]
...
...
@@ -132,10 +134,10 @@ DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
REST_FRAMEWORK
=
{
'DEFAULT_PAGINATION_CLASS'
:
'rest_framework.pagination.PageNumberPagination'
,
'PAGE_SIZE'
:
10
,
'DEFAULT_AUTHENTICATION_CLASSES'
:
(
'DEFAULT_AUTHENTICATION_CLASSES'
:
[
'rest_framework_simplejwt.authentication.JWTAuthentication'
,
'rest_framework.authentication.SessionAuthentication'
,
)
]
}
SIMPLE_JWT
=
{
...
...
@@ -148,7 +150,7 @@ SIMPLE_JWT = {
'SIGNING_KEY'
:
SECRET_KEY
,
'VERIFYING_KEY'
:
None
,
'AUTH_HEADER_TYPES'
:
(
'
Bearer
'
,),
'AUTH_HEADER_TYPES'
:
(
'
JWT
'
,),
'USER_ID_FIELD'
:
'id'
,
'USER_ID_CLAIM'
:
'user_id'
,
...
...
@@ -156,10 +158,11 @@ SIMPLE_JWT = {
'TOKEN_TYPE_CLAIM'
:
'token_type'
,
'SLIDING_TOKEN_REFRESH_EXP_CLAIM'
:
'refresh_exp'
,
'SLIDING_TOKEN_LIFETIME'
:
datetime
.
timedelta
(
minutes
=
5
),
'SLIDING_TOKEN_LIFETIME'
:
datetime
.
timedelta
(
minutes
=
60
),
'SLIDING_TOKEN_REFRESH_LIFETIME'
:
datetime
.
timedelta
(
days
=
1
),
}
CORS_ORIGIN_ALLOW_ALL
=
True
CORS_ALLOW_ALL_ORIGINS
=
True
# If this is used then `CORS_ALLOWED_ORIGINS` will not have any effect
CORS_ALLOW_CREDENTIALS
=
True
ASGI_APPLICATION
=
"backend.asgi.application"
\ No newline at end of file
backend/backend/urls.py
View file @
16228ea8
...
...
@@ -5,6 +5,8 @@ from backend.cms import views
from
rest_framework_simplejwt.views
import
TokenObtainPairView
,
TokenRefreshView
from
rest_framework.authtoken.views
import
obtain_auth_token
from
django.contrib
import
admin
router
=
routers
.
DefaultRouter
()
router
.
register
(
r'users'
,
views
.
UserViewSet
)
router
.
register
(
r'groups'
,
views
.
GroupViewSet
)
...
...
@@ -16,6 +18,7 @@ router.register(r'conversations', views.ConversationViewSet)
# Additionally, we include login URLs for the browsable API.
urlpatterns
=
[
path
(
''
,
include
(
router
.
urls
)),
path
(
'admin/'
,
admin
.
site
.
urls
),
path
(
'api-auth/'
,
include
(
'rest_framework.urls'
,
namespace
=
'rest_framework'
)),
re_path
(
r'^api/auth/token/obtain/$'
,
ObtainTokenPairWithUserView
.
as_view
()),
re_path
(
r'^api/auth/token/refresh/$'
,
TokenRefreshView
.
as_view
()),
...
...
backend/db.sqlite3
View file @
16228ea8
No preview for this file type
backend/output.m4a
View file @
16228ea8
No preview for this file type
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment