Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Q
Question chain chatbot code
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
2022-298
Question chain chatbot code
Commits
3f0be01d
Commit
3f0be01d
authored
Oct 08, 2022
by
Vihanga Thathsara Pahalagamage
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
This is the chat.py file
parent
71e3c5c2
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
69 additions
and
0 deletions
+69
-0
chat.py
chat.py
+69
-0
No files found.
chat.py
0 → 100644
View file @
3f0be01d
import
random
import
json
import
pickle
import
numpy
as
np
import
nltk
from
nltk.stem
import
WordNetLemmatizer
from
keras.models
import
load_model
lemmatizer
=
WordNetLemmatizer
()
# intents = json.loads(open('intents.json').read())
#
# words = pickle.load(open('words.pkl', 'rb'))
# classes = pickle.load(open('classes.pkl', 'rb'))
# model = load_model('chatbotmodel.h5')
# for api
intents
=
json
.
loads
(
open
(
'chatbot/intents.json'
)
.
read
())
words
=
pickle
.
load
(
open
(
'chatbot/words.pkl'
,
'rb'
))
classes
=
pickle
.
load
(
open
(
'chatbot/classes.pkl'
,
'rb'
))
model
=
load_model
(
'chatbot/chatbotmodel.h5'
)
def
clean_up_sentence
(
sentence
):
sentence_words
=
nltk
.
word_tokenize
(
sentence
)
sentence_words
=
[
lemmatizer
.
lemmatize
(
word
)
for
word
in
sentence_words
]
return
sentence_words
def
bag_of_words
(
sentence
):
sentence_words
=
clean_up_sentence
(
sentence
)
bag
=
[
0
]
*
len
(
words
)
for
w
in
sentence_words
:
for
i
,
word
in
enumerate
(
words
):
if
word
==
w
:
bag
[
i
]
=
1
return
np
.
array
(
bag
)
def
predict_class
(
sentence
):
bow
=
bag_of_words
(
sentence
)
res
=
model
.
predict
(
np
.
array
([
bow
]))[
0
]
ERROR_THRESHOLD
=
0.25
results
=
[[
i
,
r
]
for
i
,
r
in
enumerate
(
res
)
if
r
>
ERROR_THRESHOLD
]
results
.
sort
(
key
=
lambda
x
:
x
[
1
],
reverse
=
True
)
return_list
=
[]
for
r
in
results
:
return_list
.
append
({
'intent'
:
classes
[
r
[
0
]],
'probability'
:
str
(
r
[
1
])})
return
return_list
def
get_response
(
intents_list
,
intents_json
):
tag
=
intents_list
[
0
][
'intent'
]
list_of_intents
=
intents_json
[
'intents'
]
for
i
in
list_of_intents
:
if
i
[
'tag'
]
==
tag
:
result
=
random
.
choice
(
i
[
'responses'
])
break
return
result
def
get_res
(
input
):
message
=
str
(
input
)
ints
=
predict_class
(
message
)
res
=
get_response
(
ints
,
intents
)
return
res
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment