This is the chat.py file

parent 71e3c5c2
import random
import json
import pickle
import numpy as np
import nltk
from nltk.stem import WordNetLemmatizer
from keras.models import load_model
lemmatizer = WordNetLemmatizer()
# intents = json.loads(open('intents.json').read())
#
# words = pickle.load(open('words.pkl', 'rb'))
# classes = pickle.load(open('classes.pkl', 'rb'))
# model = load_model('chatbotmodel.h5')
# for api
intents = json.loads(open('chatbot/intents.json').read())
words = pickle.load(open('chatbot/words.pkl', 'rb'))
classes = pickle.load(open('chatbot/classes.pkl', 'rb'))
model = load_model('chatbot/chatbotmodel.h5')
def clean_up_sentence(sentence):
sentence_words = nltk.word_tokenize(sentence)
sentence_words = [lemmatizer.lemmatize(word) for word in sentence_words]
return sentence_words
def bag_of_words(sentence):
sentence_words = clean_up_sentence(sentence)
bag = [0] * len(words)
for w in sentence_words:
for i, word in enumerate(words):
if word == w:
bag[i] = 1
return np.array(bag)
def predict_class(sentence):
bow = bag_of_words(sentence)
res = model.predict(np.array([bow]))[0]
ERROR_THRESHOLD = 0.25
results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD]
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({'intent': classes[r[0]], 'probability': str(r[1])})
return return_list
def get_response(intents_list, intents_json):
tag = intents_list[0]['intent']
list_of_intents = intents_json['intents']
for i in list_of_intents:
if i['tag'] == tag:
result = random.choice(i['responses'])
break
return result
def get_res(input):
message = str(input)
ints = predict_class(message)
res = get_response(ints, intents)
return res
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment