Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
A
A Machine Learning Analysis On Fungiculture And Mushroom Market
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
2023-038
A Machine Learning Analysis On Fungiculture And Mushroom Market
Commits
f2a7242e
Commit
f2a7242e
authored
May 26, 2023
by
D.P.C.H Pathirana
😼
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
GNN Model
parent
ede754db
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
102 additions
and
0 deletions
+102
-0
poision_edible_classification.py
poision_edible_classification.py
+102
-0
No files found.
poision_edible_classification.py
0 → 100644
View file @
f2a7242e
# -*- coding: utf-8 -*-
"""Poision Edible Classification.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1r40VuKZJbBTeFVASnAhetlId5x-OjmBQ
"""
!
pip
install
torch_geometric
!
pip
install
pyg_lib
torch_scatter
torch_sparse
torch_cluster
torch_spline_conv
-
f
https
:
//
data
.
pyg
.
org
/
whl
/
torch
-
2.0.0
+
cpu
.
html
import
torch
import
torch.nn
as
nn
import
torch.optim
as
optim
from
torch.utils.data
import
DataLoader
from
torchvision.datasets
import
ImageFolder
from
torchvision.transforms
import
ToTensor
from
torch_geometric.data
import
Data
# Define the Graph Convolutional Network (GCN) layer
class
GCNConv
(
nn
.
Module
):
def
__init__
(
self
,
in_channels
,
out_channels
):
super
(
GCNConv
,
self
)
.
__init__
()
self
.
linear
=
nn
.
Linear
(
in_channels
,
out_channels
)
def
forward
(
self
,
x
,
edge_index
):
x
=
self
.
linear
(
x
)
return
torch
.
matmul
(
x
,
edge_index
)
# Define the Graph Neural Network model
class
GNNModel
(
nn
.
Module
):
def
__init__
(
self
,
in_channels
,
hidden_channels
,
num_classes
):
super
(
GNNModel
,
self
)
.
__init__
()
self
.
conv1
=
GCNConv
(
in_channels
,
hidden_channels
)
self
.
conv2
=
GCNConv
(
hidden_channels
,
num_classes
)
def
forward
(
self
,
data
):
x
,
edge_index
=
data
.
x
,
data
.
edge_index
x
=
self
.
conv1
(
x
,
edge_index
)
x
=
x
.
relu
()
x
=
self
.
conv2
(
x
,
edge_index
)
return
x
.
log_softmax
(
dim
=
1
)
# Set the device
device
=
torch
.
device
(
'cuda'
if
torch
.
cuda
.
is_available
()
else
'cpu'
)
# Mount Google Drive
from
google.colab
import
drive
drive
.
mount
(
'/content/drive'
)
from
torchvision.transforms
import
Resize
,
ToTensor
from
torchvision
import
transforms
# Define the dataset and data loaders
# transform = nn.Sequential(Resize((224, 224)), ToTensor())
transform
=
transforms
.
Compose
([
Resize
((
64
,
3
)),
ToTensor
()])
train_dataset
=
ImageFolder
(
'/content/drive/MyDrive/Mushroom Classification Project/component poision edible /poisonousmushroomdetection/train'
,
transform
=
transform
)
val_dataset
=
ImageFolder
(
'/content/drive/MyDrive/Mushroom Classification Project/component poision edible /poisonousmushroomdetection/validation'
,
transform
=
transform
)
train_loader
=
DataLoader
(
train_dataset
,
batch_size
=
16
,
shuffle
=
False
)
val_loader
=
DataLoader
(
val_dataset
,
batch_size
=
16
,
shuffle
=
True
)
train_dataset
val_dataset
# Define the model and optimizer
model
=
GNNModel
(
in_channels
=
3
,
hidden_channels
=
64
,
num_classes
=
len
(
train_dataset
.
classes
))
.
to
(
device
)
optimizer
=
optim
.
Adam
(
model
.
parameters
(),
lr
=
0.001
)
import
torch
tensor
=
torch
.
randn
(
64
,
2
)
tensor
=
tensor
.
t
()
tensor
=
tensor
.
mm
(
torch
.
ones
(
64
,
3072
))
print
(
tensor
)
edge_index
=
torch
.
randn
(
64
,
3072
)
# Training loop
model
.
train
()
for
epoch
in
range
(
10
):
for
data
in
train_loader
:
x
=
data
[
0
]
.
to
(
device
)
y
=
data
[
1
]
.
to
(
device
)
edge_index
=
edge_index
graph_data
=
Data
(
x
=
x
,
edge_index
=
edge_index
,
y
=
y
)
graph_data
=
graph_data
.
to
(
device
)
optimizer
.
zero_grad
()
output
=
model
(
graph_data
)
loss
=
nn
.
functional
.
nll_loss
(
output
,
graph_data
.
y
)
loss
.
backward
()
optimizer
.
step
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment