
Security Header Configurations 1

Security Header Configurations

First, install the flask-talisman library using pip:

pip install flask-talisman

Now, let's create a Python file for our plugin, which we'll call security_headers.py :

from flask import Flask
from flask_talisman import Talisman

app = Flask(__name__)

Define the security policy
csp = {
 'default-src': "'self'",
 'script-src': ["'self'", 'cdnjs.cloudflare.com'],
 'style-src': ["'self'", 'maxcdn.bootstrapcdn.com'],
 'img-src': ['data:', 'cdn.example.com'],
 'object-src': "'none'",
}

Initialize the Talisman extension with the security policy
talisman = Talisman(
 app,
 content_security_policy=csp,
 content_security_policy_nonce_in=['script-src'],
 feature_policy={
 'geolocation': "'none'",
 'midi': "'none'",
 'sync-xhr': "'none'",
 'microphone': "'none'",
 'camera': "'none'",
 'usb': "'none'",
 'magnetometer': "'none'",
 },
 strict_transport_security=True,
 force_https_permanent=True,
)

Define your routes and other application logic below

Security Header Configurations 2

if __name__ == '__main__':
 app.run()

In this code:

1. We import the necessary modules and create a Flask app.

2. We define a Content Security Policy (CSP) that specifies which sources are allowed
for different types of content, such as scripts, styles, and images.

3. We initialize the flask-talisman extension with our security policy and additional
security configurations like Strict Transport Security (HSTS) and enforcing HTTPS.

4. You can customize the CSP and feature policy rules according to your application's
requirements.

Now, you need to integrate this middleware into your Flask application. Define your
routes and other application logic below the app.run() line.

The flask-talisman library will automatically add security headers to your responses
based on the defined policy.

