Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
A
AI-Powered Real-Time License Plate Recognition
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
2
Merge Requests
2
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
2023-281
AI-Powered Real-Time License Plate Recognition
Commits
96452023
Commit
96452023
authored
Sep 07, 2023
by
Karunarathna P.M.J.I.
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload cv2CCTV.py
parent
2c4c4066
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
273 additions
and
0 deletions
+273
-0
cv2CCTV.py
cv2CCTV.py
+273
-0
No files found.
cv2CCTV.py
0 → 100644
View file @
96452023
import
numpy
as
np
from
ultralytics
import
YOLO
import
cv2
import
cvzone
import
math
from
sort
import
*
import
time
import
torch
#from PIL import Image
import
shutil
import
os
from
detecto
import
core
,
utils
# from detecto.visualize import show_labeled_image, plot_prediction_grid
from
torchvision
import
transforms
import
matplotlib.pyplot
as
plt
import
pyrebase
firebaseConfig
=
{
"apiKey"
:
"AIzaSyAcltJ26-MoRUlsyAiYdztrlxtuBtjUKko"
,
"authDomain"
:
"cctv-584b2.firebaseapp.com"
,
"databaseURL"
:
"https://cctv-584b2-default-rtdb.firebaseio.com"
,
"projectId"
:
"cctv-584b2"
,
"storageBucket"
:
"cctv-584b2.appspot.com"
,
"messagingSenderId"
:
"972965540260"
,
"appId"
:
"1:972965540260:web:0e8bf3e4465d7bd55fd131"
,
"measurementId"
:
"G-GN9MTT80BZ"
,
"serviceAccount"
:
"Firebase_Service_Account_Keys.json"
}
firebase
=
pyrebase
.
initialize_app
(
firebaseConfig
)
storage
=
firebase
.
storage
()
model
=
YOLO
(
"Yolo-Weights/yolov8l.pt"
)
classNames
=
[
"person"
,
"bicycle"
,
"car"
,
"motorbike"
,
"aeroplane"
,
"bus"
,
"train"
,
"truck"
,
"boat"
,
"traffic light"
,
"fire hydrant"
,
"stop sign"
,
"parking meter"
,
"bench"
,
"bird"
,
"cat"
,
"dog"
,
"horse"
,
"sheep"
,
"cow"
,
"elephant"
,
"bear"
,
"zebra"
,
"giraffe"
,
"backpack"
,
"umbrella"
,
"handbag"
,
"tie"
,
"suitcase"
,
"frisbee"
,
"skis"
,
"snowboard"
,
"sports ball"
,
"kite"
,
"baseball bat"
,
"baseball glove"
,
"skateboard"
,
"surfboard"
,
"tennis racket"
,
"bottle"
,
"wine glass"
,
"cup"
,
"fork"
,
"knife"
,
"spoon"
,
"bowl"
,
"banana"
,
"apple"
,
"sandwich"
,
"orange"
,
"broccoli"
,
"carrot"
,
"hot dog"
,
"pizza"
,
"donut"
,
"cake"
,
"chair"
,
"sofa"
,
"pottedplant"
,
"bed"
,
"diningtable"
,
"toilet"
,
"tvmonitor"
,
"laptop"
,
"mouse"
,
"remote"
,
"keyboard"
,
"cell phone"
,
"microwave"
,
"oven"
,
"toaster"
,
"sink"
,
"refrigerator"
,
"book"
,
"clock"
,
"vase"
,
"scissors"
,
"teddy bear"
,
"hair drier"
,
"toothbrush"
]
tracker
=
Sort
(
max_age
=
20
,
min_hits
=
3
,
iou_threshold
=
0.3
)
limits
=
[
0
,
200
,
1344
,
241
]
limits1
=
[
0
,
400
,
1344
,
540
]
totalCount
=
[]
uniqIds
=
[]
linepassIds
=
[]
timeDuration
=
[]
fulldata
=
[]
mask
=
cv2
.
imread
(
"mask.png"
)
def
calculate_speed
(
time_seconds
):
# Convert distance to kilometers and time to hours
distance_km
=
20
*
0.001
time_hours
=
time_seconds
/
3600
# Calculate speed in km/h
speed_kmph
=
distance_km
/
time_hours
return
speed_kmph
model_number
=
torch
.
hub
.
load
(
'ultralytics_yolov5_master'
,
'custom'
,
path
=
'best.pt'
,
force_reload
=
True
,
source
=
'local'
)
model_ocr
=
core
.
Model
.
load
(
'./model_weights.pth'
,
[
'0'
,
'1'
,
'2'
,
'3'
,
'4'
,
'5'
,
'6'
,
'7'
,
'8'
,
'9'
,
'A'
,
'B'
,
'C'
,
'D'
,
'E'
,
'F'
,
'G'
,
'H'
,
'I'
,
'J'
,
'K'
,
'L'
,
'M'
,
'N'
,
'O'
,
'P'
,
'Q'
,
'R'
,
'S'
,
'T'
,
'U'
,
'V'
,
'Z'
,
'X'
,
'Y'
,
'W'
])
def
number_plate
(
img
):
# img = cv2.imread(image_path)
gray
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2GRAY
)
img_rgb
=
cv2
.
cvtColor
(
gray
,
cv2
.
COLOR_BGR2RGB
)
# original = img.copy()
# gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# xp = [0, 64, 112, 128, 144, 192, 255] # setting reference values
# fp = [0, 16, 64, 128, 192, 240, 255] # setting values to be taken for reference values
# x = np.arange(256)
# table = np.interp(x, xp, fp).astype('uint8') # creating lookup table
# img1 = cv2.LUT(gray, table) # changing values based on lookup table
results
=
model_number
(
img_rgb
)
# results
class_names
=
model_number
.
module
.
names
if
hasattr
(
model_number
,
'module'
)
else
model_number
.
names
jk
=
0
crp_img_num
=
""
for
det
in
results
.
pred
[
0
]:
box
=
det
[:
4
]
.
cpu
()
.
numpy
()
score
=
det
[
4
]
.
cpu
()
.
numpy
()
labelx
=
int
(
det
[
5
]
.
cpu
()
.
numpy
())
x1
,
y1
,
x2
,
y2
=
box
.
astype
(
int
)
# Draw bounding box
cv2
.
rectangle
(
img
,
(
x1
,
y1
),
(
x2
,
y2
),
(
0
,
255
,
0
),
2
)
crop_img_number
=
img
[
y1
:
y2
,
x1
:
x2
]
crp_img_num
=
f
'num_{jk}.jpg'
cv2
.
imwrite
(
crp_img_num
,
crop_img_number
)
jk
=
jk
+
1
predictions
=
model_ocr
.
predict
(
crop_img_number
)
labels
,
boxes
,
scores
=
predictions
thresh
=
0.5
filtered_indices
=
np
.
where
(
scores
>
thresh
)
filtered_scores
=
scores
[
filtered_indices
]
filtered_boxes
=
boxes
[
filtered_indices
]
num_list
=
filtered_indices
[
0
]
.
tolist
()
print
(
labels
)
filtered_boxes_list
=
filtered_boxes
.
numpy
()
filtered_labels
=
[
labels
[
i
]
for
i
in
num_list
]
combined_data
=
[]
for
box
,
label
in
zip
(
filtered_boxes
,
filtered_labels
):
combined_data
.
append
(
np
.
concatenate
((
box
,
[
label
])))
combined_data
=
np
.
array
(
combined_data
)
print
(
combined_data
)
try
:
# Convert the array to numeric, excluding the last column with non-numeric values
numeric_data
=
combined_data
[:,
:
-
1
]
.
astype
(
np
.
float64
)
# Sort the rows based on the values in the first column
sorted_indices
=
np
.
argsort
(
numeric_data
[:,
0
])
sorted_data
=
combined_data
[
sorted_indices
]
print
(
sorted_data
)
number_plate_str
=
""
for
i
in
sorted_data
:
number_plate_str
=
number_plate_str
+
i
[
4
]
except
:
number_plate_str
=
""
print
(
number_plate_str
)
# Count the letters
letter_count
=
sum
(
1
for
char
in
number_plate_str
if
char
.
isalpha
())
# Remove the first letter if it's not 'A'
if
letter_count
>=
3
and
number_plate_str
[
0
]
.
isalpha
()
and
number_plate_str
[
0
]
!=
'A'
:
number_plate_str
=
number_plate_str
[
1
:]
print
(
number_plate_str
)
# Put label text
label_text
=
f
'{class_names[labelx]}: {score:.2f} : {number_plate_str}'
cv2
.
putText
(
img
,
label_text
,
(
x1
,
y1
-
10
),
cv2
.
FONT_HERSHEY_SIMPLEX
,
0.5
,
(
255
,
0
,
0
),
2
)
print
(
crp_img_num
)
print
(
"crp_img_num ggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg"
)
print
(
number_plate_str
)
return
number_plate_str
,
crp_img_num
# Get the starting time
start_time
=
time
.
time
()
def
read_vid
(
vid
):
cap
=
cv2
.
VideoCapture
(
vid
)
i
=
0
while
True
:
success
,
img
=
cap
.
read
()
if
not
success
:
# Break loop when video capture is finished
break
current_time
=
time
.
time
()
img
=
cv2
.
resize
(
img
,
None
,
fx
=
0.5
,
fy
=
0.5
)
imgRegion
=
cv2
.
bitwise_and
(
img
,
mask
)
results
=
model
(
imgRegion
,
stream
=
True
)
detections
=
np
.
empty
((
0
,
5
))
for
r
in
results
:
boxes
=
r
.
boxes
for
box
in
boxes
:
x1
,
y1
,
x2
,
y2
=
box
.
xyxy
[
0
]
x1
,
y1
,
x2
,
y2
=
int
(
x1
),
int
(
y1
),
int
(
x2
),
int
(
y2
)
# cv2.rectangle(img,(x1,y1),(x2,y2),(255,0,255),3)
w
,
h
=
x2
-
x1
,
y2
-
y1
conf
=
math
.
ceil
((
box
.
conf
[
0
]
*
100
))
/
100
cls
=
int
(
box
.
cls
[
0
])
currentClass
=
classNames
[
cls
]
if
currentClass
==
"car"
or
currentClass
==
"truck"
or
currentClass
==
"bus"
or
currentClass
==
"motorbike"
and
conf
>
0.3
:
# cvzone.putTextRect(img, f'{currentClass} {conf}', (max(0, x1), max(35, y1)),scale=0.6, thickness=1, offset=3)
# cvzone.cornerRect(img, (x1, y1, w, h), l=9, rt=5)
currentArray
=
np
.
array
([
x1
,
y1
,
x2
,
y2
,
conf
])
detections
=
np
.
vstack
((
detections
,
currentArray
))
resultsTracker
=
tracker
.
update
(
detections
)
cv2
.
line
(
img
,
(
limits
[
0
],
limits
[
1
]),
(
limits
[
2
],
limits
[
3
]),
(
0
,
0
,
255
),
5
)
cv2
.
line
(
img
,
(
limits1
[
0
],
limits1
[
1
]),
(
limits1
[
2
],
limits1
[
3
]),
(
0
,
0
,
255
),
5
)
for
result
in
resultsTracker
:
x1
,
y1
,
x2
,
y2
,
id
=
result
x1
,
y1
,
x2
,
y2
=
int
(
x1
),
int
(
y1
),
int
(
x2
),
int
(
y2
)
w
,
h
=
x2
-
x1
,
y2
-
y1
# cvzone.cornerRect(img, (x1, y1, w, h), l=9, rt=2, colorR=(255, 0, 255))
cvzone
.
putTextRect
(
img
,
f
' {int(id)}'
,
(
max
(
0
,
x1
),
max
(
35
,
y1
)),
scale
=
2
,
thickness
=
3
,
offset
=
10
)
cx
,
cy
=
x1
+
w
//
2
,
y1
+
h
//
2
# cv2.circle(img, (cx, cy), 5, (255, 0, 255), cv2.FILLED)
if
limits
[
0
]
<
cx
<
limits
[
2
]
and
limits
[
1
]
-
5
<
cy
<
limits
[
1
]
+
25
:
if
totalCount
.
count
(
id
)
==
0
:
totalCount
.
append
(
id
)
cv2
.
line
(
img
,
(
limits
[
0
],
limits
[
1
]),
(
limits
[
2
],
limits
[
3
]),
(
0
,
255
,
0
),
5
)
foundAT
=
time
.
time
()
uniqData
=
{
'id'
:
id
,
'foundAT'
:
int
(
foundAT
)
}
uniqIds
.
append
(
uniqData
)
if
limits1
[
0
]
<
cx
<
limits1
[
2
]
and
limits1
[
1
]
-
5
<
cy
<
limits1
[
1
]
+
25
:
cv2
.
line
(
img
,
(
limits1
[
0
],
limits1
[
1
]),
(
limits1
[
2
],
limits1
[
3
]),
(
0
,
255
,
0
),
5
)
PassAT
=
time
.
time
()
uniqLineTime
=
{
'id'
:
id
,
'passAT'
:
int
(
PassAT
)
}
linepassIds
.
append
(
uniqLineTime
)
for
item
in
uniqIds
:
if
item
[
'id'
]
==
uniqLineTime
[
'id'
]:
foundAT_value
=
item
[
'foundAT'
]
time1
=
PassAT
-
foundAT_value
speed
=
calculate_speed
(
round
(
time1
,
2
))
if
speed
>
30
:
uid
=
item
[
'id'
]
crop_img
=
img
[
y1
:
y2
,
x1
:
x2
]
try
:
number_plate_num
,
img_num
=
number_plate
(
crop_img
)
storage
.
child
(
"CCTV_IMG"
)
.
child
(
img_num
)
.
put
(
img_num
)
img_num_url
=
storage
.
child
(
"CCTV_IMG"
)
.
child
(
img_num
)
.
get_url
(
None
)
except
:
number_plate_num
=
number_plate
(
crop_img
)
img_num_url
=
None
img_file_name
=
f
'crop_{uid}.jpg'
cv2
.
imwrite
(
img_file_name
,
crop_img
)
storage
.
child
(
"CCTV_IMG"
)
.
child
(
img_file_name
)
.
put
(
img_file_name
)
# storage.child("CCTV_IMG").child(img_num).put(img_num)
# os.remove(file.filename)
img_url
=
storage
.
child
(
"CCTV_IMG"
)
.
child
(
img_file_name
)
.
get_url
(
None
)
# img_num_url = storage.child("CCTV_IMG").child(img_num).get_url(None)
i
=
i
+
1
f_data
=
{
'item_id'
:
item
[
'id'
],
'pass_id'
:
uniqLineTime
[
'id'
],
'foundAT'
:
int
(
foundAT_value
),
'passAT'
:
int
(
PassAT
),
'timeduration'
:
round
(
time1
,
2
),
'speed'
:
speed
,
'number_plate_num'
:
number_plate_num
,
'img'
:
img_url
,
'number_img'
:
img_num_url
}
fulldata
.
append
(
f_data
)
# cv2.putText(img,str(len(totalCount)),(255,100),cv2.FONT_HERSHEY_PLAIN,5,(50,50,255),8)
#uncomment from here
# cv2.imshow("Image", img)
# if cv2.waitKey(1) & 0xFF == ord('q'):
# break
elapsed_time
=
current_time
-
start_time
if
elapsed_time
>=
300
:
break
cap
.
release
()
return
fulldata
cv2
.
destroyAllWindows
()
# return fulldata
# if uniqIds:
# cv2.putText(img,str(uniqIds[-1]),(100,600),cv2.FONT_HERSHEY_PLAIN,3,(50,50,255),2)
# if linepassIds:
# cv2.putText(img,str(linepassIds[-1]),(100,670),cv2.FONT_HERSHEY_PLAIN,3,(50,50,255),2)
# if fulldata:
# cv2.putText(img,str(fulldata[-1]['speed']),(100,720),cv2.FONT_HERSHEY_PLAIN,2,(50,50,255),2)
# cv2.imshow("Image", img)
# if cv2.waitKey(1) & 0xFF == ord('q'):
# break
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment