Commit cf783124 authored by malindu jethaka's avatar malindu jethaka

push backend

parent cda6c703
#
FROM python:3.8.16
#
WORKDIR /code
COPY . .
RUN apt-get update && apt-get install -y libgl1-mesa-glx
#
RUN pip install --no-cache-dir --upgrade -r newreq.txt
EXPOSE 8000
#
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]
b'/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDABQODxIPDRQSEBIXFRQYHjIhHhwcHj0sLiQySUBMS0dARkVQWnNiUFVtVkVGZIhlbXd7gYKBTmCNl4x9lnN+gXz/2wBDARUXFx4aHjshITt8U0ZTfHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHz/wAARCAGwAwADASIAAhEBAxEB/8QAGwABAQEBAQEBAQAAAAAAAAAAAAECAwQFBgf/xAA+EAACAQMCAwYDBgUDBAIDAAAAAQIDESEEMRJBUQUiYXGBkRMyoQZSscHR8BQjQlPhM2LxJENywjSygpKi/8QAFwEBAQEBAAAAAAAAAAAAAAAAAAECA//EABkRAQEBAQEBAAAAAAAAAAAAAAABEUECIf/aAAwDAQACEQMRAD8A/IIEKgqgAAQpGAIAAKQoEKAAR1txRfic0jpDYDkk3sjrCLs4vmeiFPiV4xt+BmvBQt3ryeGBynC1LiSwmcT1Vq3xKbjZJWPKUCkAQAAAEKAAIAKAAKiADVz39nv+VNdJHzz3dnPNReCYV7OZ4e0JXrqP3Y/jk9y3Pl6mXFqaj/3WXksEiOQsCoqoVFBUVGkZRpEHaKtFktkuySIijSwd9M/51P8A81+JwO1Hu1IPpJP6gfZqK1Kp4Rf5n66KtFLofloRUqsIvaU4przaP1QiVDx6jsvR6lS4qEIyf9cEoy/z6nsBWXxofZ+MZyvqZfDbVkoq/u7nu0vZml0slOEOKotpzfE15dPQ9YC6pmdOFWm4VIxnB4cZK6ZoBHzK/Y1Kd3QnKi+Ufmj+q9GeNaLVUIfDqwTg8xlB8Sg/Hay9D75A1r8tqaacOPhs07SweLU3Wmnzwl9UvzP0HaGgnGFSVKLnBxd0nlK2/ifndW/+nxlSlHPo2RY8DMs2zJFZAKBAdadNSg220ySpTjyv5AcrC7RQQTBHFPdXLYbAYcXyfuZvb5lY6+YtddSjmCuH3XYzlbr1QFTuUlk8ks1tkDRbkQApALkAjKRhEBAiqqDKAjIBURSxGikCMgtiFVAAQQFIAIUFEABBxKg00CikKQBcEBABQAASZpRAlmVLJ0hDrdI7wlCC7keKXUDFPTzks91Pqc0uF2O0pSl8zx0WEcpK0+gG3UlGmlx2XRbnFyvdRWPE3Uj3H4M5gXbx9DElZ+B0UW1jbqxOC4Xlt8ugHIEBUCkKAAAAAAAAAKCgQ9OglbUW6xaPM0ddNLh1EH0dgr60fmXmfGbvdn2D4xIBUQtzSKVEKgKjcTKNLAHR+pAVEFidIu0W+hhG18r8ij9HQs9TQT51Yf8A2R+nPzGiXHqtMus4vPhk/ThmoACoAACgAgBAIAflftHpqGlnQjQTjx8UpRvhWtt7n6o/K/aefF2jCH3KS+rf6Iqx8JkNMyZbZHJlsLXaXVpAeimrUren5G1uzK+SF+eWajsRElTjUfeWeq3OctJPLp99L0f+TvHc70k1Fva7/f4cyq+U1Z2aafRqzFj686cKkVGcFNLZWyv34HlqaCW9KV/9svyf6lweGxLHSUZQdpxcW9r8/LqZsTBPMW6FJYDLgvJkaa3XsbuAOZDcoLyZlprfIGeKzyXcYZOGzugKQrIBGECrcCgAIjIaIQQpAVQyygghCkAAAAQoKICixBakOJX5o87R1rJ3v/Sc1nDAgFrAoAqi2bUUlnJBhRbNJJHWFFvL7qO0IRh8qz1e4HGFFvMu6vqd/hxjDur1e7NqJmpL+XJRy2sMqOCkr93LLGV+ZIUuFPN2XZ2t6kVU1l9DjKfFJnbhSu745nLhTynzA7cK+FJywmjiuFJpb9Wbs0+F3d1uyRg3hpWuBqWVnY5yg2rWszrw4MTkld4A5VIcLxszmeppThZpK+y6HnlFxlZlRkoAApAFAAECkKAKQqAFTs79Ba5bAfXi+Jp9bHx2rNo+rQfFSh7Hzav+rP8A8mIrmCkKio1cwVBW0zaOSNxA6o0jMXgtyI0jaeGc0dIoo/S9lK+t0t+bv/8Awz9LY/K9hT+JrNNG64qbldN8lFpfij9WGayCshUAAAKQAUAjkopyk0kt22QaPxfbs+PtbUZxFxivSK/O5+0Pwesmqus1E07qVWbT8OJhY8rMs20YZGkKleSQNUleov34/kFdpfN5L9/gVbGeb9jSIjUWopyeyV2fT1PZtbR0IVLccOFfEcV8rtn0PDpaXxq1KlyqTUX5Xz9Ln7PDTTSae6ZqRNx+QWVZK63ta/0/Qq23sl9PzR6+09C9JWlOFN/w0sxsrqD6eB4/G/rf8/1FjSy7yamlJP8Apna3vY8tTRRd3RnwtYtJ3V/yPQsNcr+n+GejRR/1qrSfDFRSaurt5/BCFuPi1KU6TtUi4/g/UxY/RVKFKbkoXpp8mrxf5o+dqOzuB3V6d9ucH68v3guHyvm2JsdalKdL/UjZdd0YsZwZuMFsSwGZRT8GZaa8TYwB41KTdk22WUakXwyUk3yOuhlXjq4PSx4q20Va59fV1NSqmkoUZOtqqKlOc7Xt4LrZER8OaqQdpqUX4hqooqT4lF7Pkz7fa0Zajs3STpfEqWnKLdRd9vH0Omnp/wAb2NR0W83F1KfmpO69vwA+A1UjGMnxKMtm+Znil95+5+n1lGOrhoqFOKnTozqR3smoxV3+LOFXs3SR12jfw06VanKUowbtdX2vnkB+f4pfefuaaqqKk1JRfM3qJwlXvRpKnFYUU27n26lWtDs+a7Qk3Ou4qNO3yRT3tyA+E4VYwU5Kai9myONRRUmpKL5n6XVzrup2nTq3elhBfDT2WVw2PNXq6mHZlVaxuVbUOKp0rYgr7+AHw3GooqTUlF8zPE+rP0d61XszXUtQ6n8RCC4ozVoRSa+XxPzYG4RnUdoKUn0QUKkpOKjJyXKx9TsyVSn2Vq6mlclqOOCdt1HP52Pp1arjKspqpTrThSdSrSjdqVtn5gfl3xRbUrprkyuFRRUnGSi9mfa7bo0Z6upJOo6yp09oqzk0vm6M9EHWq9n6ylqHUeohFcUZq0YpNfL4gfnpUq0Y8UoTUerRhcTdlds/Q67/AKuhqs6mi6MU3Gcu61dK1jl2fo6NKtUr0pRlKDSpwrSjB3a3s3yA+N8Kr8R0+CfGt42yYfEnZ3TP1lSH8PW7Rr1py70oq9KV5/8AGD432gjbtBVOVSnGSurO1ufiB5LJqz2OLovistmdwBwnTsrrKMxji56bEjTjHa78wrkoN5ax1PRGEYrCz1e4RtNJeIEUS8SjtlmW2yBHXemnF8L67nF22WywjSlaDj1ZAIR3WxQ1gK53W3Iwr8XRo68Gd8dDSQEtlMJJbFAA5zpqStdqx0vd5D3Axa2OSMzp8a3yuZ0eHgi8QPIDpWVp9Lo5lAABAAAAABUUgCtXG+GS42A+hoal6bV8xZ4Gd9LPhlLo4v8AA84AAqAhUVK5eEAkaSIsGkUVM0iJFA2jpE5o3ED105Ri3xNLKad+Z9fRdtarTWjVf8RT6SfeXrz9T53ZdRUu1dNOSTi5qEk9rSx+Z+i1n2fo1Lz0kvgT+7vB+nL09gj2aPtPS6xJUqtqn9ueJe3P0PYfitVpK+jlw6qk4K+J7xfk/wDhnt0XbWp03dqt6in/ALn3l68/X3DOP04PJpO0tNq7KlUSn/bliS9OfoesqAAAp4O2tPLVdl1oQV5JKaXWzvY94A+B9n+1FLSz09WV5UYOcH96C5en4WPzcbuKvu1dn0+2tFLs/WudG8aVW7g1/S2nxR+r9H4HzHKxK3Eb5GCt3f6GSK0borvNnNPNjtDEWyCoqd3YiXLbxNJWla92QfT7Ep8faNN/cjKf5f8AsfpkfE+z1P8AmaifJRjFfVv8j7h08sVGk001dPkz872hof4OspQzRm8PbgfR+HQ/RklCM4uM4qUXhprDNEuPyUla+D16ZcOkX++bl7Y/InaWmWiq8EZXjJcUVb5V0OrXBGFP7kUn58ySLayzrp1mcn8qjldf3k5HX5NK+s3+/ojTLh8CFbEf5c3fu2vF+h8qppaU23Tl8PNtu6z7EW4wqzTs1Gy83hHzk7yw2k8Yzh7Y9jNblfOq0p0XarHh8eRzsfXi044SSxfh2XmjhV0UJZpP4bebf0v9+Blp86xLHSpCVOTjNZTtdbMwTEeShXq6aoqlCpKnNf1RdmdanaGrqyjKpqasnDMW5PBv4cPur2HBH7q9iIxPX6udSNSeoqucPlk5O6MQ1VenKEoVpxcL8LUng68Efur2JwR+6vYDnDV6iHDwVqkeBtxtJ4b3LLW6mUlKVeo2m2nxddzfBH7q9icMfur2A86bUuJNp73PVV7T1taEoVdXWnGW6c20zHDHovYvDHovYCS1uqnSjSnqKkqcdouTsjdXtPW1oShV1dacZbpzbTM8Mfur2HBH7q9gJPXaqpR+FPUVJU/uuTsec9HDH7q9hwx6L2AxQ1NbTT46FWdOW14uxunrtVSqyq09RUjUl80lLLJwrohwx6L2Ay9TWfxL1Z/zPnz83mbnrtVUpfCnqKkqf3XJ2JwrovYnCui9gLU1mpq01TqV6koLaLlhHOpWqVanxKk5Sn95vJvhXREsuiA1DW6mnVlUhXqRnLeSk7s51as603OrOU5Pdt3ZrhXREsuiA7gFAhQAKAABCkAAAAQpAoAAAAAEKAIMBoAees7zS6I5nSsrTvyZyKigAAAAAAAqAQCqAALF2fiRKwWNgBQEUo0jRhMqYGipERQNIpFk0kBUbjgyjcQOyn8PvreFpe2T+ip8ST5NXP5zvFrqj+g6KfxNDp53vxUov6IM10lGM4uMkpReGmrpnxdZ9n6U7z0cvgS+48wf6ensfcIEfidTpq2kmo6mk6bv3Zbxfk/2z26PtrU6e0ar/iKf+595eT5+vufp5wjUg4TipRkrNNXTPi6v7Pwleein8KX9uWYPy5oK+ho+0NPrF/Jqd+2YSxJen6HqPxWooVtLVUdRTlSmn3Xyfk0e/R9t6ihaNf8A6in1eJr15+vuEx+nCPLo9fp9bG9CfeW8HiS80eoI+T9ppRXZTjJXcqkVHwd7/gmfkGfp/tVUtR01P705S9lb/wBj8wxWoyEr80gCNNWjFqSmpHVK0EurOFjpCDg8tZWyIOkWE3F35eJVsag+G8nslcD9B9nKsJaetTWKqnxTXg1Zf/U+wcNBpo6XR0qahGMlCPG4q3FK2Wz0WOkYSxUgVBH5XtPVLU66coJ8MbU1db2bv9WI6tTbc3wye99n+h+i1Og0+qu6tNcX31iXufE1fYeootyo/wA6HhiS9Ofp7BU4lbz28fI7V3Zwgtoo+TCpUoyai2rPMX1PVHVqpJub4ZPfF1/gumOuolw6Sy3nL6LH42PB12Wb7fux6tTLjlCMWmox5fX8V7HmkrXv062JViptWy+aWfHk+fqVy4bu9mle17X81+aFndqzvvtlrxXP0MVnamorm+t9jDpXjru1NR62/X8vqeY7Vnefkvx/xY5FZRkKOflkgy9wCEQIUgVAAkEUWKilGCFZAIACCAAoCwAUMmiMI7IAEAAAUEKAAAVAUgAhQBAAAAFgAsOoAPYyUcwOdVXpPwPOemr/AKcjyhFABQAAAAAUEKFCkKAAAAqZAUaKZRQNplTMo0gNxNo5o2mBtGorJlGosDqmfa7O7U1GkhTXE6tLhS+HJ7Y5Pl+B8S+D3U8U4rwREfrNJ2ppNS1GNTgqP+ieHfouT9D3H4fDw8o+jou2NRprRq3r0ukn3l5Pn6jUx+msDzaTX6fWL+TPvc4SxJeh6bFRipShWpunVhGcHvGSumfE1n2eWZ6GfC/7dRtx9HuvqfesUD8LWpVNPVUK9OVKqsq+H5p/ofS0Xbteg1HU31FPrhTX6/vJ+kr6ejqaTp16cakHykrnwdd9nZwvPQz41/am8+kv19wrw/aDW0tbqKEqE3KEab3VrNv/AAj5DOuojOFWUKkJQnHDjJWaOLCowgCKsVeSX76fmd5O8mcqSvPyOm7fmBpHo0dL4+opUv7lSMX5Xz9LnnPq9gUvidpU3ypwlP8AL/2ESv1BDbRk0yhbAoQSLYAivJq+zdPrM1I8NS2Jxw/8+p8PU9iami7wSrQ6x3Xmv0ufqUBo/H6fTV61SpHTUnUtZcWyX+fY+jS7CnUV9VW4cYjTW379T7wLo/Mars3U6S74Pj0d+KnHMfOP5o+XXnxTdnhK173P22orR0+nq1p/LTi5P0R+CrSk4SlN3nN959W9/wAw3uvM3dt2tfNuhORWRmRA9vMB726YAyCkIiWIaIwrJUQqCNAiZQMyRk1LYyUQABUABEAQFUDIAO4KQgAAAUhQBSFAgKQCAACAAAAEBdyMXwNwBHuVke+wGJpyhLyPMeyx5Zx4ZNFGQAEAAAAAUKiFAoIVAAAAKhYFFAAFRpGUVAdEzSOZpMDombi8nG5uLA7cj6J81PJ74zusko2W5kpBpNppptSTumnZryZ9TSduV6Ltqb14dVZSX5M+SW4R+x02roauHFQqKaW65rzXI9B+IhUlTmp05yhOO0ouzR9jR9vyjaGshxL+5BZ9V+nsVMffsU50NRS1NJVKM1OD5o1UmqdOU5bRTbA/A9pT+L2hqZ3verJLyTaR5DTblFN7vJC1WSkKRXSji7/f7wbhsvIxH/T8zoiCo/R/Zml/8mryvGmvTL/FH52GZH637PU1HsuErWdScpP3aX0SKlfSMtGiMrLILYWKiGkQXINAiYIqgAqPkfaSv8PQRop96tNL0WX+CXqfkazvJLp+/wB+Z9v7RV/jdo/DjlUYqP8A+Ty/pwnwZO7bWz28uReNxhkNPYyZUW/lkyV7eZAABAgQpCKgIABq+DIAMgAEAAEAIAAIUCAknZXIPUAGECFIAKQoFBChQhQQQhSAQAFAAAOZSAALAMAcNRbu9Tsees7z8EgOYAKAAAAAAVEAFKQoAoIBSAFFKZAGwjKNRVwNIqIjokgqJm4ZMuNldbCDswOybTaeLHtj8q8jxJ8UXfdZ9D2koqbTwbUr7mCGR2BzUmjakmEaFyAo7UK9XT1PiUKkqcudufmuZ9Gr246vZuopVocNaVOUYziu621b0PknLUStSfi0vz/II87Mi5CqhbXx1IipZQHblHxyaRH81ui/f4GkQWOHc/Qdk9tUaWnpabUx+EqcVGNTeLtjPT8D4mmoOvXpUYu0qk1FPp1ftc9Wu7L1XZ95VI/Eor/uwWF5rl+BUfroyjOKlCSlF5TTumaPxei19fRS4tPU7ry4PMX6fmj7+i7c0+ptCt/IqvlJ91+T/UM4+oLFBRGiWNoWGjFgjViWAqJKShFyk7Rirt9BY+b2/X+D2XOKferNU167/RMD8pqKzrSq1pYlUk5W6Xe3p+R5Wdaryl6/l+pyYrTLMs0ybehFZlv5YICAUgBAMlAGQUgAhSAACACAACAAQFsLARGtTS+E3Fu7UrMRw7jVS4pyby22yjsACIEKAIUgCqUgAoAAhCkAEKQAAAABAAbsgcpO7bvgCuXFvjwOdTNn1NZsc5O5RkAAAAAAAFAAAoBRQS4AAAAAEBUbg7GeEqZB0tgsW0RSTNWuFbi+mSOCi7rZki7PwNrez2e4CD4Wnv8Ame5bK21j5+VJp7nsoSvSWcrAo6lJdc8P6DJkUEAGlJrc2mnscwB1OGqfdgurv7f8nRS6nDUu84rwv9f8FRxFwQopunmf7/fIwjpR3b/f73A2t35m0Yjsvc2tyD632fo/F7ThK2KUJT9Xhfi/Y/WHwfsxRtS1Ff70lBeSV/xl9D7wR8jXdg6fUt1NO/4eq8vhXdl5r9D89q9JqNFLg1VPhTwprMJev5M/cGJwjUg4TipRkrNNXTLqPyWh7U1OitGMvi0l/wBub28nyP0Gh7W02tajGTp1X/254fp1Pn637PRzPQyVN/2pvu+j5Hw61OpRqfC1FOVOp92X4p8/Qo/dlPyui7c1GmtGtfUU/F99evP19z9DpNbp9ZBy09RStutmvNEHoZDRAiH5j7S6j4mtp0IvFKN3/wCUv8L6n6dtRTbdkt2fgtXqHqK1bUPerJteTwvZfgWLHlk7ttbcvIyVmWRQy9imXuFQhSAAAQQAAQhQBCFIBACpAZFjVjEpvlgCtpbmHNkIUbjK90zRzi7SOgEMzbcXfd2RozNXV0EekAEAAAQABVBCgCkAAhQBCFAEAAEAAGKjsrdTmi1ZWnG+1jLdshVZzZ0umvPmc5XKIAAgAAgAEFUAAACFFBAQUAICgAo2matc53NqS2YUV+R0hLiVrGbCzWwG2ip3Mp3RV4kGm+K0t2lZnXTy7zjfc4pk4rZTA+gpdTSdvFHnoS4qduh1TaIjpvsDKafmav1IoAAB56z/AJj8Lfgeg8s3ecn1bEEJzBDSNHWC/lvxx+/c4ndYjFeoG1zNw+Ywtjcdn44IPrdldrS0NONKdNToXb7uJK7v6n6XTaujqqfxKNRTjztuvNcj8UdKNapQqqpRqSpzXNc/PqEftwfE0Pb0Z2hrUqcuVSPyvz6HWv8AaDR08U3Kq/8AarL6hH1TjqNJR1VJ069ONSHR8vLofntR9o9RO6owjSXXd/v0PnT1+pqVIzqV5tpp7uy8bfoUx9HXdg1tOnPSN1qf3H868uv4+Z8unUnSq8VOUqdWDtdYlHwf6H7bS146nT060dpxvbo+aPPr+zNNr43qR4ai2qQxJfr5Mar5ei+0DVoa6OP7sF+K/T2PvUqsK1NTpTjOEsqUXdM/I6/svVaC8px+LRX/AHILbzXL8DhpNZW0k+PTVOG+XHeMvNfmMTH6bt7Ufw/ZdRJ2lV/lx9d/pc/GVXsvX9/vmfT7T7Tl2l8FOHw1TT4le6bfP2X1Pkyd5N9S8WMkZSEVDJp7GQBCkAgAIIAABCkAhClti7wuoEQl3fMy6iWI+7M5ZQlJswUgAhSAQ6p3VzkapvdAbIUgHoABEAAFQFIAKQAUEKAABBAAUQAjAAEA4Vv9TOcGU3zNVl3k+pzKOi2MyVkyJ+xqPW10t/EDANVGm7r1MgAAAKiFAAAoEKQgFIUAUhQAAKKip+JEANxlyexs5e5uEs2ZFdIotshYKBLGWvc3sjLKLSm4NNHsTTSa2Z4HjPQ6Ua3A0pbPfwJR7DSlbcwUyOifQu+2/Q5J2NqSe4Rq9s9Mnk5HpqNqnLnjc8xYqERWEVFSyju9/JHOmu8dErvHN8yCp8jrBZXuckkpb36nWFk8kHTkc6kpQnZPDSaZ0MTjxQfWOV5c0UcnN82TiZluyIpEVu5YsxfBpMo/TfZfVcVOrpZPMHxw8nv9fxPvn4bs7VPR66jXvaKdp/8Ai9/19D9yGA+H2p2Jp506mooSWnmk5S+4+t1y80fcPkfaPU/B7OdJPvV5KHpu/pj1LFfkZS7l9rnJm6ryl0OZaDICPYiowCACMpAIQrIQACACpN+RJSUN8vocZSlJ3bA6ucY4j3n1exhty3dzKRb8igAAIzJWQCEKQAWLs7kIB2BIu8UUDuACAAABCkAAAAAAKAABCkAhCkAEKTYDM1xQaPMeqx5WrO3QoFu9iAAAAAAAFIUAACiAAgFIUAACigACxWTaijBU7bewGmvQK/kFLqaxuFbTuaOaDn0YGm3+pLmU/IoEZnqaZnmB69PV4koPdbHfc8WnxVj5nuxLzJRCkysMeRkSpJ8FurORuo8RRgojF7DzOn8tQVu9J7voBuCte/I1Ei+XzKiBdp3tg6RaaujMeZsIqbRpS2a3RgAc6sEpWW268jnKy8D0SXFDxjleXM4tDVIrBV1IrlwlnA0xqLvhn6PsrtxQpU6OsTtFKKqrP/7fqfnIJv5Yyl5Js7wjUgm5wcYva7RUr93CcakFOElKLymndM/KfaPU/G7S+En3KEeH1eX9LHHR6+voZ3oztBu8oSzF/p6Hz69WVSc6k33qknJ+ruWI4yd231MggUIwQAZKQAAQgEAACKvJAgHOb45Nktg6SXPqc2BCFIUW5GwAICmQBCkAAgA3Te6NnC50hNu/Fy5geoAEAAAAABAAAAAApAAAAEIUgEBQBDzTVptWsen1JKEZYe6KPKCtWdnuiAAAAAKgAAKAAIIAAKACgAAKCFAoZCoC3CbTwQcgNcTeGTyIOQVb2NKRl+ZZR4JON72tcDV7gxct7gdqOHc9PFl23R5Iux0py/mYCPVGaeGW3Q5PDsVTcd8kxUqO8vJGSzfFJshA5lSzgiNRV5IDpFy2krWyn1/dza2Mt5fsaINR5GiR38kasABABU+Fponwo3ff7vJWKAEYU1yb83b8DpFRi7xhFPqkrnI0pNBHRyb3bIRNPYpRmo7QtzeDy1JXlbpg71ZWb/2r6nlApAQoMgbIAMlIQCFIAAIABSADnJWwdCSXErAchYpCiAACEKQAQpAIRhkApflVt2IK78VyJLcI9wAIoAABAAAAAAAACACkHIICAoAhQAJYFJ+QHnrR4Z36nM7113U+jOBQAAApDRQIyhgQAAQpCkAAFAEKAAAFAAAAACqLaIdKdtnsFjJW3KTk92aUbo5lXAqIUiKnY60t7vJxNwdmUetu6VuRLm6VOU4O1uJZsYkuTVn0ZmiAl7blexAR0pfMc0dKeItgbXXxNJmbNY6BEHVNM3fqcLmlKwR1sQifQ0s+YUIUgFBAANqfXkYI9vMDlVeEubyzmWcryb9jm2VFbIAAIABAAAIUgAhoAZBSAAABmSvnmc2rOx1MVF/V13AwS4IUUhSACAgEZCkCOlFZb8CVN7ik7Sa6km+9boB7QQEVSFIAAAAAACFIAAAAIvIICAFAgKAICkAxUV6clvg8p7bcrHjkuGTXRlEAAAqAKKCFuBAUASwsUAQFsQgAAAACgUEApAABtPBgubAb4u6YACiNGUUCmou2TKKnnAH0tG7Rlfd2v4HedONRZ35Nbnl0W0s36vxPUnYxR5KkHTlwvPijnzOtZ3qy9jnzKCOkJWVmc7C9gO68PYu5xjK22x1UlIAVdR5+4ZBU7G1K+Gcip2COyfXKKclJo2pc0wNWIVO/gw0FQ51ZWi36I28Js89V5Uegg5gEKgAAAAAgAABIFAEKQAZKQAQpAA89gQDjJcLIdJ7HMBcjYBRCFIAIUgFj8yDd22ILvIjV5WXNge4AEAAAAAABCgQoAEBQAAQAAAACkAAoAyefUK1S/VHpMVafHD/csgeQAFFAAFIUFAAgFBCoARlIBAUEAAFAAAAABSFAAEKAAAFRU3yIi+AH1NJFRoK3N5Z2WWebRu1FJ9cHWou65J2aRiq8zfE2+ruRB4ItijUVd2LKLV+nUtJZudEB57dCp56M6ypXu4+xya3TWUEdYVOTNrw9jzZW+xuM3HxQHa19ieYjJS8y+fuQAmRpoXA6KV9zSfqjkVSsBucljoss8jbbbe7OtWWLdTiVVZAAiAAAAAAAAAhQAYuQCAAAQpABAAI84OTVnZnUzNXV+aA5kAAEKGBkhWQo1D5kR93zf0NQz5rJJR5gespAQUAgC4AAFAAAAAAAAKAAAAAAAAUDIKLAeOtDgm+jyjB668eKm7csnlKAAKBQAAAAhDRAFwABAAQCkAAoCKAAAFIAAAAoAAqNRs/QwajurewH0dPZUop8zdV8NJ5w7bnFXjFTjmL3RKs+OCjG/VvoYVG7oGFdJI2nyKOsMQfiL2/Mu0Ug2kknhEHSCu15m6lKNRZw+TRmGcrobTIPJOnKm7SWOT5Mxa2x78NWeV0PPU07WaeV0KOCeejOsanJnJq5L232Kj0+W3QNJ7HGM2vFHVSUgHmB5+5mfdXmRWJy4pPpsZfQEKgAAAAAAAAAS4AAgFJYoAEKQCApAICkAhDRkDlUjZ3WzMnbdHKUHHxQEFwnfzABmTXmGgMl4n1BAPaCAAAAKCFAoIUAAAAKAAAAAAAAUAAAAAAHiqR4JyXie04amF48a5bgecAFApAUUAACFDAhACAAAAAAFRCoooAAgKQAAABUQoA1TTlNJZdzJ6NJFfE4nsiD2qPDFLocqllKyVjsn6o4Td5y8zKsf1G1wQldSd+bZhHSnFOWUB0e9umDSy7GVl3NLmwNwSSdla7NEjayS5FICZpO5kASpSjUztLqeWcJQdpL9GexMrSkmmrplHz7W2ClnGGd6tBxzC8o9OaODVyjrGpyZmo+9ZbI53a39yhFIAAAAAAAAAAIABCoEAoIUAQXAAAgAAgBmSsgAgAHKorO6Ibmro5oChA0o9cAYIdOC/MjVgPQUhQAAAFIUAUhQABQAAAAAAAUAAABQAAAAEsnhlAHgnFwk4vkZPVqoXSmvI8pRQQoApClAAARkKyEAAAAAAKABbggKKCXKAFgAFgUjALJ6qUeGCXNnKhHiltsehog3Cbj4oxyBHlEUidaa7rfU5rY6xwkgNbFTFiWIOid8o0n1OKZtSvhgdAZvbyNEAJ2AA0nc51aMZ3ku7LfwZok5d23Uo8bVnZqzJa2xqT4pNmWVBAAAAAAAAAAAQAAAQACAAAAAFyAAQXAEYIAIABDKhnc0WO4GoxS2Rzl8zOq38Ec57tgSOwlhCDVvEkncDuUhQAAAFIUAUhQBSFAAAAAUAAABSFAAAAUAAAUDLipRcXs8Hz5RcZOL3R9E8+rhtPHRlHlAAFBCgCkBQAAEBSWIAAAqBClFAAEBSACkAFAN04OUrcgPTQgow8WbaIVS6mVZaIbaI0Bk6Rn1OZQO6dtso1vscIyaOsXfK3ArRDSz5kaIiqVjS6r2OewTtsB2TuU5pp+ZpPqRVOVaWH44R0bsmzzVHeXgsFgyTzDBUAAAAAEAAAAACAgFIAAAIAAAAgFmBCGuHqW1gMixogGbCyKAJ6COW+iZJOyuapxcYq+7yBXgxLY1I5yYHNK8jQirK4KPQUgIKAAAAApSFAFIAKAABSACgAAUhQAAAoAAFAAElGM04yV0UAeCrSdKVnlPZnM+jUgqkXGX/B4JwlTk4yWV9SjJSACghQAAAAABYhQBCoWBQABAABQAHIBbY9VBdy5yp0nLMsL8T0RSirJWRBQAQVOxSBOwFsZsb3JYDJU7CxAOsZp4e5u/X3PObjUtuB2aMtBPpldDW+xFYubUupGjOwRqcuFP6HA1N3duhhlUAAQAAAhSAAAAICMACACgWZbAQhqyAEsxw+JbFsBEkgLCwEYLZEAhCkYEFwQAlxSt6m28s55jK68mVyXUCNmLN+QnLoVtbLkBGAGB3AAFAAAAAUAAUAAUAAACgAAAKQoAAAUAAUAACkKBCShGatNJmgB5Z6T7kvSRj+Fq9EvU9oKPnzo1IZcXbqsnM+oZlThLeCYHzge16ak+TXkzz16PwZKzbTQHIAAAAUUA1CDnK0QMix6VpVzm36Go0IR5XfiQeSxLHu4I/dXsPhwvfhXsB41CT2R2p0lF3nv0O1rDcCAbbggpTJQKCAClTuZAGmiNBPqUDANNGbAajJxOsZJ5WGcCp2YHoTvh4ZJYTZiM74YnJ4V7kVgzzvzKEVBFKQAQoAhCgCBlFgMks2bwh5ICKIwi26sY5ICeSFurLkYAlkX0JxdCcTYGvUl0ZIBviMtkAC5CgDNhZmiMDKXqW4bMsCSlY5LvSyanjHuYW5ReWxqKsgkrAgEbK3ZCMeJ2A9AAAoAAFIAKAAKAAKAAKAAAAAFIUAAUAAAKAABSFAAAAAABQAB5tb8kH4s9J8/UVfi1MfKsIDmCFKAAAp7NPFKin97LPEj6MVaEUtrIACkIoQoAySxogRPMy015GmgBARrmgncC3KQAUEKAKnYgA1uRohpO+4GbEN2M2AC5ABSoiyUAAABCpN7FSS53AiRbC7eyLbqwISz5mvIy34gTC8RdkuLsC+bF0tjIAt2QACAtiXSAWKZcugywKL9AkAFh5AzcCszcEAEbsrlOdR8gMN3uxEjLFYKN8gjNy3wQT5pWR3jFRVjFKNld8zpfAApCgUAAAABQABQQoFAAFAAAAoAAACkKAAAFAAApCgAAAKQoAAAZn/pzu7d15PmHt1crQjHq7s8bRRAAAANKLewBHt08uKnb7uDzKnaHE36HTTS/mtN7oK9IKQggAAgKQIgaKQDOxGr+ZszYDN82ZS4ZnMd9gKUgApTJQKAAKmUyLgWxk1uAIlgoKkBBbqUWAZZVHqS5GwNX6EcjNwAbMhsZAC4sAAsLkuBRcgswI2EmzSSFwIkUlwAI2CAGQpABCkAHGTu2zrN2iziyjO7OmyMxXM0AJFcUrEk+R0ordkHQxUeLdTRzvduT2CuxTMcmggUhQAAAoAAoAAoIUCghQBSFAAAAUAAAAKAABSACgAAUhQABJNRV2B5NTK9R74wclk66hLjds3ycSqWIl5mipb4AiidKUVfPqRI0nYDTW65HGlK1WLfU2m47N+4fe4XhSvv1IPYQR+VAAQoAgAAgACICkAy0PBmiNAYtw5WwTuaMuPNbgUET6lAoILgUEuFkCmkr52IkkW4FwgQlyDVyNmQUUgvYmX4AGxl+AtYXAWBLtgC3IAkACRqxLgLWFyABcguAFyAAACAAAAIUAcqj2Ri10aac5uxqSs0rWSKM2sg3YE3dlkgiXNnWCaWeZYU7ZeWbYGJ7W6nGT5LZHScrHEQeiDOhwi7HaLugqlIAigACghQBSFAFIAKUhQBSFAAACghQAAAFIAKAAKCFAAACmJ4lGT2V/Q2TdAePUK1ZnI9OpjlNckcN0VUNIyVPk0BpeQlhBElLFr3IMufhg3SUp1Fa1lyOXqemlBuGJcN8gelbAkVZb3KEQFIAIUBUIUAQhQEQAAQzsaAGWkzN2t/c00TfcAN9jNmnjJ0Sx0AluppeBltXxkuegFFyWbLhbAAS5L9ALcl2xbmxcBYXJuLdQGWLWFwkACRcIXAbC5BcACXAAEAAAAAAABAAAAAFKkBFFLZCWxdld7HN3qbYj+IHO3E+77nWELI1GKSNASxmXXkabscpvuv2A5SldmQANo6wZyNReQruCJ3RQigAAUgApSACgACghQKCFAoAAFIAKAAAAAFIAKAAKCFAFIAOVeN1dZtyPNax7jhUoXzB28GB52hFM6fAqX+Ve5f4ab3kl5ZKrm9tjnk9i00f6m2zrGEYrupIDy0aDb4pYSyemMbX6bmmCIAAAAAIAAICkCoCkAEKQIEKQCEaNEAzezNLKI0Zu0B0bsS11ltGUyp3At8WRL4JJ2J5gXfwQvYlyAW5UglbcX6ANha4VkS4GsIlyC6QFJcl7gC3IAAAAAAAAQAUgKBACgQosVIAkJNRV3/AMklKztFXl+AjCzvJ3l1AnC5O8/SJsoCIRysSUrGG85X75hRvqc6jwvc1fxJbjul6AcjrQpcT4pfKvqahQd7zwuh6Ir2QH//2Q=='
\ No newline at end of file
from fastapi import FastAPI, File, UploadFile
from fastapi.middleware.cors import CORSMiddleware
import pandas as pd
import cv2
import numpy as np
import base64
from pathlib import Path
import os
import pickle
from pydantic import BaseModel
import tensorflow as tf
from tensorflow.keras.models import load_model
class Component1Type(BaseModel):
base64Image: str
class Component2Type(BaseModel):
menopause: int
agegrp: int
density: int
race: int
Hispanic: int
bmi: int
agefirst: int
nrelbc: int
brstproc: int
surgmeno: int
hrt: int
class Component3Type(BaseModel):
ageAtDiagnosis: int
typeOfBreastSurgery: int
cancerType: int
cancerTypeDetailed: int
Cellularity: int
Chemotherapy: int
Pam50ClaudinLowSubtype: int
cohort: float
erStatusMeasuredByIHC: int
erStatus: int
neoplasmHistologicGrade: float
her2StatusMeasuredBySNP6: int
her2Status: int
tumorOtherHistologicSubtype: int
hormoneTherapy: int
inferredMenopausalState: int
integrativeCluster: int
primaryTumorLaterality: int
lymphNodesExaminedPositive: float
mutationCount: float
nottinghamPrognosticIndex: float
oncotreeCode: int
overallSurvivalMonths: int
overallSurvivalStatus: int
prStatus: int
radioTherapy: int
relapseFreeStatusMonths: int
relapseFreeStatus: int
numberOfSamplesPerPatient: int
sex: int
threeGeneClassifierSubtype: int
tmbNonsynonymous: float
tumorSize: float
tumorStage: float
app = FastAPI()
origins = [
"http://localhost",
"http://localhost:8080",
"http://localhost:3000",
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
def get_root():
return {"message": "Hello World"}
model1_path = Path("assets/model1.h5")
@app.post("/component/1")
async def get_component1(file: UploadFile = File(...)):
with open(file.filename, "wb") as buffer:
buffer.write(await file.read())
with open(file.filename, "rb") as image_file:
img_bytes = image_file.read()
if os.path.isfile(model1_path):
new_model = load_model(model1_path)
img_array = np.frombuffer(img_bytes, np.uint8)
img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
resize = tf.image.resize(img, (256, 256))
yhat = new_model.predict(np.expand_dims(resize/255, 0))
type = ''
if yhat > 0.3:
type = 'Malignant'
else:
type = 'Benign'
return {"type": type}
else:
return ({"model_loaded": False, "error": "Model file not found"})
model2_path = Path("assets/model2.pkl")
@app.post("/component/2")
def get_component2(data: Component2Type):
data_fields = {
"menopause": data.menopause,
"agegrp": data.agegrp,
"density": data.density,
"race": data.race,
"Hispanic": data.Hispanic,
"bmi": data.bmi,
"agefirst": data.agefirst,
"nrelbc": data.nrelbc,
"brstproc": data.brstproc,
"surgmeno": data.surgmeno,
"hrt": data.hrt
}
if os.path.isfile(model2_path):
with open(model2_path, 'rb') as f:
loaded_model = pickle.load(f)
dfToCheck = pd.DataFrame(data_fields, index=[0])
return {"probabilityOfSurvice": loaded_model.predict_proba(dfToCheck)[:, 1][0]}
else:
return ({"model_loaded": False, "error": "Model file not found"})
model3_path = Path("assets/model3.pkl")
@app.post("/component/3")
def get_component3(data: Component3Type):
dict_to_predict = {
'Age at Diagnosis': data.ageAtDiagnosis,
'Type of Breast Surgery': data.typeOfBreastSurgery,
'Cancer Type': data.cancerType,
'Cancer Type Detailed': data.cancerTypeDetailed,
'Cellularity': data.Cellularity,
'Chemotherapy': data.Chemotherapy,
'Pam50 + Claudin-low subtype': data.Pam50ClaudinLowSubtype,
'Cohort': data.cohort,
'ER status measured by IHC': data.erStatusMeasuredByIHC,
'ER Status': data.erStatus,
'Neoplasm Histologic Grade': data.neoplasmHistologicGrade,
'HER2 status measured by SNP6': data.her2StatusMeasuredBySNP6,
'HER2 Status': data.her2Status,
'Tumor Other Histologic Subtype': data.tumorOtherHistologicSubtype,
'Hormone Therapy': data.hormoneTherapy,
'Inferred Menopausal State': data.inferredMenopausalState,
'Integrative Cluster': data.integrativeCluster,
'Primary Tumor Laterality': data.primaryTumorLaterality,
'Lymph nodes examined positive': data.lymphNodesExaminedPositive,
'Mutation Count': data.mutationCount,
'Nottingham prognostic index': data.nottinghamPrognosticIndex,
'Oncotree Code': data.oncotreeCode,
'Overall Survival (Months)': data.overallSurvivalMonths,
'Overall Survival Status': data.overallSurvivalStatus,
'PR Status': data.prStatus,
'Radio Therapy': data.radioTherapy,
'Relapse Free Status (Months)': data.relapseFreeStatusMonths,
'Relapse Free Status': data.relapseFreeStatus,
'Number of Samples Per Patient': data.numberOfSamplesPerPatient,
'Sex': data.sex,
'3-Gene classifier subtype': data.threeGeneClassifierSubtype,
'TMB (nonsynonymous)': data.tmbNonsynonymous,
'Tumor Size': data.tumorSize,
'Tumor Stage': data.tumorStage
}
if os.path.isfile(model3_path):
with open(model3_path, 'rb') as f:
loaded_model = pickle.load(f)
dfToCheck = pd.DataFrame(dict_to_predict, index=[0])
return {"prob": 1-loaded_model.predict_proba(dfToCheck)[:, 1][0]}
else:
return ({"model_loaded": False, "error": "Model file not found"})
## Run the Backend
pip install --no-cache-dir --upgrade -r newreq.txt
uvicorn main:app --reload
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment