Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
2
22_23-J 18
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
1
Merge Requests
1
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
22_23-J 18
22_23-J 18
Commits
61fad8c5
Commit
61fad8c5
authored
Apr 12, 2023
by
Lelkada L L P S M
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
word filtration script - improvements
parent
e140ae77
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
351 additions
and
1 deletion
+351
-1
IT19001708/STG/script/word_filtration.ipynb
IT19001708/STG/script/word_filtration.ipynb
+351
-1
No files found.
IT19001708/STG/script/word_filtration.ipynb
View file @
61fad8c5
...
@@ -466,13 +466,363 @@
...
@@ -466,13 +466,363 @@
]
]
},
},
{
{
"attachments": {},
"cell_type": "markdown",
"cell_type": "markdown",
"id": "6b172121-5cd7-4408-8591-6b20ed6dec33",
"id": "6b172121-5cd7-4408-8591-6b20ed6dec33",
"metadata": {},
"metadata": {},
"source": [
"source": [
"#### offensive scale - method 2"
"#### offensive scale - method 2"
]
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "3aa9017f-da3b-4074-b61e-4cd1391a84d0",
"metadata": {},
"outputs": [],
"source": [
"word_scores = defaultdict(lambda: {'sum': 0, 'count': 0})\n",
"\n",
"for index, row in df.iterrows():\n",
" tokens = word_tokenize(row['text'])\n",
" score = row['score']\n",
"\n",
" for token in tokens:\n",
" word_scores[token.lower()]['sum'] += score\n",
" word_scores[token.lower()]['count'] += 1\n"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "b5db525e-0571-4eb0-8ad0-e3eb03add816",
"metadata": {},
"outputs": [],
"source": [
"for word, values in word_scores.items():\n",
" word_scores[word] = values['sum'] / values['count']\n"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "1165fd1b-8624-4118-b096-71d1ea9993cf",
"metadata": {},
"outputs": [],
"source": [
"word_offensive_df = pd.DataFrame(list(word_scores.items()), columns=['word', 'offensive_scale'])\n",
"word_offensive_df['offensive_scale'] = word_offensive_df['offensive_scale'].apply(lambda x: round(x, 2))\n"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "9d5d67b7-d493-4784-994b-3b7da03f07f0",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>word</th>\n",
" <th>offensive_scale</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>question</td>\n",
" <td>0.70</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>interest</td>\n",
" <td>0.70</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>finger</td>\n",
" <td>1.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>happy</td>\n",
" <td>0.75</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>why</td>\n",
" <td>0.61</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3640</th>\n",
" <td>non</td>\n",
" <td>1.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3641</th>\n",
" <td>twenty</td>\n",
" <td>1.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3642</th>\n",
" <td>bananas</td>\n",
" <td>0.50</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3643</th>\n",
" <td>jimmy</td>\n",
" <td>0.50</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3644</th>\n",
" <td>tease</td>\n",
" <td>-2.00</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>3645 rows × 2 columns</p>\n",
"</div>"
],
"text/plain": [
" word offensive_scale\n",
"0 question 0.70\n",
"1 interest 0.70\n",
"2 finger 1.00\n",
"3 happy 0.75\n",
"4 why 0.61\n",
"... ... ...\n",
"3640 non 1.00\n",
"3641 twenty 1.00\n",
"3642 bananas 0.50\n",
"3643 jimmy 0.50\n",
"3644 tease -2.00\n",
"\n",
"[3645 rows x 2 columns]"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"word_offensive_df"
]
},
{
"cell_type": "markdown",
"id": "64b9b371-41b6-4222-a653-be60d2538111",
"metadata": {},
"source": [
"### offensive scale - method 3"
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "33c6c135-a4d9-4fa3-b8e4-fffad5d2443f",
"metadata": {},
"outputs": [],
"source": [
"def get_wordnet_pos(treebank_tag):\n",
" if treebank_tag.startswith('N'):\n",
" return wordnet.NOUN\n",
" elif treebank_tag.startswith('V'):\n",
" return wordnet.VERB\n",
" else:\n",
" return ''\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "3ebed656-8bf0-4e43-91df-b57e78c44870",
"metadata": {},
"outputs": [],
"source": [
"word_scores = defaultdict(lambda: {'sum': 0, 'count': 0})"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "a35f0427-6d89-4bfc-b619-a11e07f6812f",
"metadata": {},
"outputs": [],
"source": [
"for index, row in df.iterrows():\n",
" tokens = word_tokenize(row['text'])\n",
" score = row['score']\n",
"\n",
" tagged_tokens = nltk.pos_tag(tokens)\n",
" for token, pos in tagged_tokens:\n",
" token = token.lower()\n",
" wordnet_pos = get_wordnet_pos(pos)\n",
"\n",
" if wordnet_pos == wordnet.NOUN or wordnet_pos == wordnet.VERB:\n",
" weighted_score = score * 0.65\n",
" else:\n",
" weighted_score = score\n",
"\n",
" word_scores[token]['sum'] += weighted_score\n",
" word_scores[token]['count'] += 1\n",
"\n",
"for word, values in word_scores.items():\n",
" word_scores[word] = values['sum'] / values['count']\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "e28e58bd-5da8-42d6-8baf-f6125a5ba74d",
"metadata": {},
"outputs": [],
"source": [
"word_offensive_df = pd.DataFrame(list(word_scores.items()), columns=['word', 'offensive_scale'])\n",
"word_offensive_df['offensive_scale'] = word_offensive_df['offensive_scale'].apply(lambda x: round(x, 2))"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "010250bc-284a-4f9b-8c2f-ae94d4a84609",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>word</th>\n",
" <th>offensive_scale</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>question</td>\n",
" <td>0.46</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>interest</td>\n",
" <td>0.46</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>finger</td>\n",
" <td>0.65</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>happy</td>\n",
" <td>0.75</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>why</td>\n",
" <td>0.61</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3640</th>\n",
" <td>non</td>\n",
" <td>0.65</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3641</th>\n",
" <td>twenty</td>\n",
" <td>1.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3642</th>\n",
" <td>bananas</td>\n",
" <td>0.33</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3643</th>\n",
" <td>jimmy</td>\n",
" <td>0.33</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3644</th>\n",
" <td>tease</td>\n",
" <td>-1.30</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>3645 rows × 2 columns</p>\n",
"</div>"
],
"text/plain": [
" word offensive_scale\n",
"0 question 0.46\n",
"1 interest 0.46\n",
"2 finger 0.65\n",
"3 happy 0.75\n",
"4 why 0.61\n",
"... ... ...\n",
"3640 non 0.65\n",
"3641 twenty 1.00\n",
"3642 bananas 0.33\n",
"3643 jimmy 0.33\n",
"3644 tease -1.30\n",
"\n",
"[3645 rows x 2 columns]"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"word_offensive_df"
]
}
}
],
],
"metadata": {
"metadata": {
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment