"## Used Algorithm - **Random Forest Classification**\n",
"## Dataset - \n",
"* The dataset link is [Stroke Prediction Dataset](https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset) and it is from kaggle online website\n",
"* The usability of the dataset is 10.00\n",
"* This dataset has 11 parameters and 5110 instances\n",
"C:\\Users\\Mishane\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1245: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
"C:\\Users\\Mishane\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\_classification.py:870: RuntimeWarning: invalid value encountered in double_scalars\n",
"C:\\Users\\Mishane\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1245: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
"C:\\Users\\Mishane\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1245: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
"C:\\Users\\Mishane\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1245: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",