Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
2
22_23-J 52
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
22_23-J 52
22_23-J 52
Commits
3cf7fd98
Commit
3cf7fd98
authored
May 24, 2023
by
Kithmini Nimasha Ketangoda
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
routes
parent
fb82b3cc
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
486 additions
and
0 deletions
+486
-0
routes.py
routes.py
+486
-0
No files found.
routes.py
0 → 100644
View file @
3cf7fd98
from
flask
import
render_template
,
request
from
app
import
app
import
numpy
as
np
# linear algebra
import
pandas
as
pd
# data processing, CSV file I/O (e.g. pd.read_csv)
import
os
import
cv2
from
pathlib
import
Path
import
pickle
import
tensorflow
as
tf
import
sklearn
from
tensorflow.keras.models
import
load_model
from
tensorflow.keras.preprocessing
import
image
#### Home Page ####
@
app
.
route
(
'/'
)
@
app
.
route
(
'/home'
)
def
home
():
return
render_template
(
'home.html'
)
#### Lung Cancer Disease ####
@
app
.
route
(
'/lungcancer'
)
def
lungcancer
():
return
render_template
(
'lungCancer.html'
)
@
app
.
route
(
'/lungpradict'
)
def
lungpradict
():
return
render_template
(
'lung_cancer_detection.html'
)
@
app
.
route
(
'/predictLungCancer'
,
methods
=
[
'POST'
])
def
predictLungCancer
():
GENDER
=
request
.
form
[
'GENDER'
]
AGE
=
request
.
form
[
'AGE'
]
SMOKING
=
request
.
form
[
'SMOKING'
]
YELLOW_FINGERS
=
request
.
form
[
'YELLOW_FINGERS'
]
ANXIETY
=
request
.
form
[
'ANXIETY'
]
PEER_PRESSURE
=
request
.
form
[
'PEER_PRESSURE'
]
CHRONICDISEASE
=
request
.
form
[
'CHRONICDISEASE'
]
FATIGUE
=
request
.
form
[
'FATIGUE'
]
ALLERGY
=
request
.
form
[
'ALLERGY'
]
WHEEZING
=
request
.
form
[
'WHEEZING'
]
ALCOHOL
=
request
.
form
[
'ALCOHOL'
]
COUGHING
=
request
.
form
[
'COUGHING'
]
SHORTBREATH
=
request
.
form
[
'SHORTBREATH'
]
SWALLOW
=
request
.
form
[
'SWALLOW'
]
CHESTPAIN
=
request
.
form
[
'CHESTPAIN'
]
with
open
(
'models/finalized_model_lung_classification_LR.sav'
,
'rb'
)
as
f
:
model
=
pickle
.
load
(
f
)
input_data
=
(
GENDER
,
AGE
,
SMOKING
,
YELLOW_FINGERS
,
ANXIETY
,
PEER_PRESSURE
,
CHRONICDISEASE
,
FATIGUE
,
ALLERGY
,
WHEEZING
,
ALCOHOL
,
COUGHING
,
SHORTBREATH
,
SWALLOW
,
CHESTPAIN
)
input_data3
=
np
.
array
(
input_data
)
.
astype
(
int
)
input_data_as_numpy_array
=
np
.
asarray
(
input_data3
)
input_data_reshaped
=
input_data_as_numpy_array
.
reshape
(
1
,
-
1
)
prediction
=
model
.
predict
(
input_data_reshaped
)
if
(
prediction
==
1
):
result
=
"You have a lung disease"
disease
=
'lung'
return
docRec
(
disease
,
result
,
value
=
"lung"
)
else
:
result
=
"You don't have a lung disease"
return
render_template
(
'results.html'
,
result
=
result
)
@
app
.
route
(
'/lungcancerlevel'
)
def
lungcancerlevel
():
return
render_template
(
'lung_cancer_level_detection.html'
)
@
app
.
route
(
'/predictLungCancerLevel'
,
methods
=
[
'POST'
])
def
predictLungCancerLevel
():
GENDER
=
request
.
form
[
'GENDER'
]
AGE
=
request
.
form
[
'AGE'
]
SMOKING
=
request
.
form
[
'SMOKING'
]
FATIGUE
=
request
.
form
[
'FATIGUE'
]
ALLERGY
=
request
.
form
[
'ALLERGY'
]
WHEEZING
=
request
.
form
[
'WHEEZING'
]
ALCOHOL
=
request
.
form
[
'ALCOHOL'
]
COUGHING
=
request
.
form
[
'COUGHING'
]
SHORTBREATH
=
request
.
form
[
'SHORTBREATH'
]
SWALLOW
=
request
.
form
[
'SWALLOW'
]
CHESTPAIN
=
request
.
form
[
'CHESTPAIN'
]
GENETICRISK
=
request
.
form
[
'GENETICRISK'
]
COUGHINGBLOOD
=
request
.
form
[
'COUGHINGBLOOD'
]
with
open
(
'models/finalized_model_lung_cancer_LR_new_level.sav'
,
'rb'
)
as
f
:
model
=
pickle
.
load
(
f
)
input_data
=
(
AGE
,
GENDER
,
ALCOHOL
,
ALLERGY
,
GENETICRISK
,
SMOKING
,
CHESTPAIN
,
COUGHINGBLOOD
,
FATIGUE
,
SHORTBREATH
,
WHEEZING
,
SWALLOW
,
COUGHING
)
# input_data2 = (1, 69, 0, 1, 0, 1, 1, 1, 1, 1)
# change input data to numpy array
input_data_as_numpy_array
=
np
.
asarray
(
input_data
)
# reshape the numpy array as we are predicting for only on instance
input_data_reshaped
=
input_data_as_numpy_array
.
reshape
(
1
,
-
1
)
prediction
=
model
.
predict
(
input_data_reshaped
)
if
(
prediction
==
[
'1'
]):
result
=
"Your risk is low"
elif
(
prediction
==
[
'2'
]):
result
=
"Your risk is medium"
else
:
result
=
"Your risk is high"
disease
=
'lung'
return
docRec
(
disease
,
result
)
@
app
.
route
(
'/lungxray'
)
def
lungxray
():
return
render_template
(
'lungXray.html'
)
def
predictxray
(
img
):
model
=
tf
.
keras
.
models
.
load_model
(
'models/lung_disease_model.h5'
)
pic
=
[]
img
=
cv2
.
resize
(
img
,
(
224
,
224
))
if
img
.
shape
[
2
]
==
1
:
img
=
np
.
dstack
([
img
,
img
,
img
])
img
=
np
.
array
(
img
)
img
=
img
/
255
# label = to_categorical(0, num_classes=2)
pic
.
append
(
img
)
# pic_labels.append(pneu)
pic1
=
np
.
array
(
pic
)
a
=
model
.
predict
(
pic1
)
print
(
a
.
argmax
())
predicts
=
a
.
argmax
()
predicts
if
predicts
==
0
:
return
"Anatomia Normal"
elif
predicts
==
1
:
return
"Inflammatory processes (pneumonia)"
elif
predicts
==
2
:
return
"Higher density (pleural effusion, atelectatic consolidation, hydrothorax, empyema)"
elif
predicts
==
3
:
return
"Lower density (pneumotorax, pneumomediastinum, pneumoperitoneum)"
elif
predicts
==
4
:
return
"Obstructive pulmonary diseases (emphysema, bronchopneumonia, bronchiectasis, embolism)"
elif
predicts
==
5
:
return
"Degenerative infectious diseases (tuberculosis , sarcoidosis, proteinosis, fibrosis)"
elif
predicts
==
6
:
return
"Encapsulated lesions (abscesses, nodules, cysts, tumor masses, metastases)"
elif
predicts
==
7
:
return
"Mediastinal changes (pericarditis, arteriovenous malformations, lymph node enlargement)"
else
:
return
"Chest changes (atelectasis, malformations, agenesis, hypoplasia)"
@
app
.
route
(
'/process_image_lung'
,
methods
=
[
'POST'
])
def
process_image_lung
():
if
request
.
method
==
'POST'
:
file
=
request
.
files
[
'file'
]
img_bytes
=
file
.
read
()
# Read image data as bytes
# Convert bytes to OpenCV image
img
=
cv2
.
imdecode
(
np
.
frombuffer
(
img_bytes
,
np
.
uint8
),
-
1
)
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2RGB
)
# Convert BGR to RGB
result
=
predictxray
(
img
)
# Make prediction using img
disease
=
'lung'
return
docRec
(
disease
,
result
)
return
'File uploaded successfully!'
######################### Kidney Disease #########################################
@
app
.
route
(
'/predictKidneypage'
)
def
predictKidneypage
():
return
render_template
(
'kidney_prediction.html'
)
@
app
.
route
(
'/kidney'
)
def
kidney
():
return
render_template
(
'kidney.html'
)
@
app
.
route
(
'/predictKidney'
,
methods
=
[
'POST'
])
def
predictKidney
():
Bp
=
request
.
form
[
'bp'
]
Sg
=
request
.
form
[
'sg'
]
Rbc
=
request
.
form
[
'rbc'
]
Bu
=
request
.
form
[
'bu'
]
Sc
=
request
.
form
[
'sc'
]
Sod
=
request
.
form
[
'sod'
]
Pot
=
request
.
form
[
'pot'
]
Hemo
=
request
.
form
[
'hemo'
]
Wbcc
=
request
.
form
[
'wbcc'
]
Rbcc
=
request
.
form
[
'rbcc'
]
Htn
=
request
.
form
[
'htn'
]
with
open
(
'models/finalized_model_kidney_prediction_RF.sav'
,
'rb'
)
as
f
:
model
=
pickle
.
load
(
f
)
input_data
=
(
Bp
,
Sg
,
Rbc
,
Bu
,
Sc
,
Sod
,
Pot
,
Hemo
,
Wbcc
,
Rbcc
,
Htn
)
# input_data3 = np.array(input_data).astype(int)
input_data_as_numpy_array
=
np
.
asarray
(
input_data
)
input_data_reshaped
=
input_data_as_numpy_array
.
reshape
(
1
,
-
1
)
prediction
=
model
.
predict
(
input_data_reshaped
)
print
(
input_data
)
if
(
prediction
==
1
):
disease
=
"kidney"
result
=
"You have a chronic kidney disease"
return
docRec
(
disease
,
result
,
value
=
"kidney"
)
else
:
result
=
"You don't have a chronic kidney disease"
return
render_template
(
'results.html'
,
result
=
result
)
@
app
.
route
(
'/kidneyDisease'
)
def
kidneyDisease
():
return
render_template
(
'kidney_detection.html'
)
def
predict
(
img
):
model
=
tf
.
keras
.
models
.
load_model
(
'models/kidney_detect_model.h5'
)
pic
=
[]
img
=
cv2
.
resize
(
img
,
(
28
,
28
))
if
img
.
shape
[
2
]
==
1
:
img
=
np
.
dstack
([
img
,
img
,
img
])
img
=
np
.
array
(
img
)
img
=
img
/
255
# label = to_categorical(0, num_classes=2)
pic
.
append
(
img
)
# pic_labels.append(pneu)
pic1
=
np
.
array
(
pic
)
a
=
model
.
predict
(
pic1
)
print
(
a
.
argmax
())
predicts
=
a
.
argmax
()
predicts
if
predicts
==
0
:
return
"There is a cyst in the uploaded picture. You are not well"
elif
predicts
==
1
:
return
"There is nothing unnatural in the uploaded image. you are fine"
elif
predicts
==
2
:
return
"There is a stone in the uploaded picture. You are not well"
else
:
return
"There is a Tumor in the uploaded picture. You are not well"
@
app
.
route
(
'/process_image_kidney'
,
methods
=
[
'POST'
])
def
process_image_kidney
():
if
request
.
method
==
'POST'
:
file
=
request
.
files
[
'file'
]
img_bytes
=
file
.
read
()
# Read image data as bytes
# Convert bytes to OpenCV image
img
=
cv2
.
imdecode
(
np
.
frombuffer
(
img_bytes
,
np
.
uint8
),
-
1
)
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2RGB
)
# Convert BGR to RGB
prediction
=
predict
(
img
)
# Make prediction using img
disease
=
"kidney"
return
docRec
(
disease
,
result
=
prediction
,
value
=
"kidney"
)
return
'File uploaded successfully!'
################################ Skin Cancer ##########################################
@
app
.
route
(
'/skinCancerPage'
)
def
skinCancerPage
():
return
render_template
(
'skinCancerPage.html'
)
@
app
.
route
(
'/skincancer'
)
def
skincancer
():
return
render_template
(
'skincancer.html'
)
def
predict2
(
img
):
model
=
tf
.
keras
.
models
.
load_model
(
'models/skinmodel.h5'
)
pic
=
[]
img
=
cv2
.
resize
(
img
,
(
224
,
224
))
if
img
.
shape
[
2
]
==
1
:
img
=
np
.
dstack
([
img
,
img
,
img
])
img
=
np
.
array
(
img
)
img
=
img
/
255
# label = to_categorical(0, num_classes=2)
pic
.
append
(
img
)
# pic_labels.append(pneu)
pic1
=
np
.
array
(
pic
)
a
=
model
.
predict
(
pic1
)
print
(
a
.
argmax
())
predicts
=
a
.
argmax
()
predicts
if
predicts
==
0
:
return
"Melanocytic nevi"
elif
predicts
==
1
:
return
"Melanoma"
elif
predicts
==
2
:
return
"Benign keratosis-like lesions"
elif
predicts
==
3
:
return
"Basal cell carcinoma"
elif
predicts
==
4
:
return
"Actinic keratoses"
elif
predicts
==
5
:
return
"Vascular lesions"
else
:
return
"Dermatofibroma"
@
app
.
route
(
'/process_image_skin'
,
methods
=
[
'POST'
])
def
process_image_skin
():
if
request
.
method
==
'POST'
:
file
=
request
.
files
[
'file'
]
img_bytes
=
file
.
read
()
# Read image data as bytes
# Convert bytes to OpenCV image
img
=
cv2
.
imdecode
(
np
.
frombuffer
(
img_bytes
,
np
.
uint8
),
-
1
)
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2RGB
)
# Convert BGR to RGB
result
=
predict2
(
img
)
# Make prediction using img
disease
=
'skin'
return
docRec
(
disease
,
result
,
value
=
"skin"
)
return
'File uploaded successfully!'
@
app
.
route
(
'/skinTumor'
)
def
skinTumor
():
return
render_template
(
'skinTumor.html'
)
@
app
.
route
(
'/tumor'
,
methods
=
[
'POST'
])
def
tumor
():
mass_npea
=
request
.
form
[
'mass_npea'
]
size_npear
=
request
.
form
[
'size_npear'
]
malign_ratio
=
request
.
form
[
'malign_ratio'
]
damage_size
=
request
.
form
[
'damage_size'
]
exposed_area
=
request
.
form
[
'exposed_area'
]
std_dev_malign
=
request
.
form
[
'std_dev_malign'
]
err_malign
=
request
.
form
[
'err_malign'
]
malign_penalty
=
request
.
form
[
'malign_penalty'
]
damage_ratio
=
request
.
form
[
'damage_ratio'
]
with
open
(
'models/finalized_model_skinT_prediction_RF.sav'
,
'rb'
)
as
f
:
model
=
pickle
.
load
(
f
)
input_data
=
(
mass_npea
,
size_npear
,
malign_ratio
,
damage_size
,
exposed_area
,
std_dev_malign
,
err_malign
,
malign_penalty
,
damage_ratio
)
# nput_data3 = np.array(input_data).astype(int)
input_data_as_numpy_array
=
np
.
asarray
(
input_data
)
input_data_reshaped
=
input_data_as_numpy_array
.
reshape
(
1
,
-
1
)
result
=
model
.
predict
(
input_data_reshaped
)
# convert to string with comma-separated values
# convert the numpy array to a string
result
=
str
(
result
)
# remove the brackets from the string
result
=
result
.
replace
(
'['
,
''
)
.
replace
(
']'
,
''
)
result
=
"Tumor size is "
+
result
+
"mm"
# result = ("Predicted result is"+result+"(mm)")
disease
=
'skin'
return
docRec
(
disease
,
result
,
value
=
"skin"
)
######################## Stroke ############################
@
app
.
route
(
'/stroke'
)
def
stroke
():
return
render_template
(
'strokePage.html'
)
@
app
.
route
(
'/predictStrokepage'
)
def
predictStrokepage
():
return
render_template
(
'stroke_predict.html'
)
# predict stroke
@
app
.
route
(
'/predictStroke'
,
methods
=
[
'POST'
])
def
predictStroke
():
gender
=
request
.
form
[
'gender'
]
age
=
request
.
form
[
'age'
]
hypertension
=
request
.
form
[
'hypertension'
]
heart_disease
=
request
.
form
[
'heart_disease'
]
ever_married
=
request
.
form
[
'ever_married'
]
work_type
=
request
.
form
[
'work_type'
]
Residence_type
=
request
.
form
[
'Residence_type'
]
avg_glucose_level
=
request
.
form
[
'avg_glucose_level'
]
bmi
=
request
.
form
[
'bmi'
]
smoking_status
=
request
.
form
[
'smoking_status'
]
with
open
(
'models/finalized_model_stroke_prediction_RF.sav'
,
'rb'
)
as
f
:
model
=
pickle
.
load
(
f
)
input_data
=
(
gender
,
age
,
hypertension
,
heart_disease
,
ever_married
,
work_type
,
Residence_type
,
avg_glucose_level
,
bmi
,
smoking_status
)
# input_data3 = np.array(input_data).astype(int)
input_data_as_numpy_array
=
np
.
asarray
(
input_data
)
input_data_reshaped
=
input_data_as_numpy_array
.
reshape
(
1
,
-
1
)
prediction
=
model
.
predict
(
input_data_reshaped
)
print
(
input_data
)
if
(
prediction
==
1
):
result
=
"You are at risk of having a stroke"
else
:
result
=
"You are not at risk of having a stroke"
return
render_template
(
'results.html'
,
result
=
result
)
# CT image detection
@
app
.
route
(
'/predictStrokeCt'
)
def
predictStrokeCt
():
return
render_template
(
'stroke_detection_CT.html'
)
def
predict4
(
img
):
model
=
tf
.
keras
.
models
.
load_model
(
'models/finalized_model_strokeCT.h5'
)
# model = load_model('finalized_model_strokeCT.h5')
model
=
load_model
(
'models/finalized_model_strokeCT.h5'
)
pic
=
[]
img
=
cv2
.
resize
(
img
,
(
224
,
224
))
# Convert the image to a numpy array and preprocess it
x
=
image
.
img_to_array
(
img
)
x
=
np
.
expand_dims
(
x
,
axis
=
0
)
x
/=
255
# Make a prediction using the model
prediction
=
model
.
predict
(
x
)
# Print the predicted class (0 = non-stroke, 1 = stroke)
if
prediction
<
0.5
:
return
(
'Non-stroke'
)
else
:
return
(
'Stroke'
)
@
app
.
route
(
'/process_image_stroke'
,
methods
=
[
'POST'
])
def
process_image_stroke
():
if
request
.
method
==
'POST'
:
file
=
request
.
files
[
'file'
]
img_bytes
=
file
.
read
()
# Read image data as bytes
# Convert bytes to OpenCV image
img
=
cv2
.
imdecode
(
np
.
frombuffer
(
img_bytes
,
np
.
uint8
),
-
1
)
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2RGB
)
# Convert BGR to RGB
prediction
=
predict4
(
img
)
# Make prediction using img
return
render_template
(
'results.html'
,
result
=
prediction
)
return
'File uploaded successfully!'
def
docRec
(
disease
,
result
,
value
):
df
=
pd
.
read_excel
(
'docs
\
RELEVANTDOCTORS.xlsx'
)
# find rows that contain a keyword in a specific column
keyword
=
str
(
disease
)
column_name
=
'Disease'
rec
=
df
[
df
[
column_name
]
.
str
.
contains
(
keyword
)]
rec
=
rec
.
iloc
[:,
1
:]
table_classes
=
'table table-striped table-bordered table-hover'
if
value
==
"lung"
:
show_button
=
True
# render the output in a table format
return
render_template
(
'results.html'
,
rec
=
rec
.
to_html
(
index
=
False
,
classes
=
table_classes
),
result
=
result
,
show_button
=
show_button
)
else
:
show_button
=
False
return
render_template
(
'results.html'
,
rec
=
rec
.
to_html
(
index
=
False
,
classes
=
table_classes
),
result
=
result
,
show_button
=
show_button
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment