Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
G
go green paddy app
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
22_23-j-79 Go green paddy app
go green paddy app
Commits
5f7ec4f9
Commit
5f7ec4f9
authored
May 26, 2023
by
it19970646
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Insect detection part
parent
9ec3bb04
Changes
13
Show whitespace changes
Inline
Side-by-side
Showing
13 changed files
with
660 additions
and
0 deletions
+660
-0
fertilizerProjBackend/.idea/fertilizerProjBackend.iml
fertilizerProjBackend/.idea/fertilizerProjBackend.iml
+12
-0
fertilizerProjBackend/.idea/inspectionProfiles/profiles_settings.xml
...rojBackend/.idea/inspectionProfiles/profiles_settings.xml
+6
-0
fertilizerProjBackend/.idea/misc.xml
fertilizerProjBackend/.idea/misc.xml
+4
-0
fertilizerProjBackend/.idea/modules.xml
fertilizerProjBackend/.idea/modules.xml
+8
-0
fertilizerProjBackend/.idea/vcs.xml
fertilizerProjBackend/.idea/vcs.xml
+6
-0
fertilizerProjBackend/.idea/workspace.xml
fertilizerProjBackend/.idea/workspace.xml
+43
-0
fertilizerProjBackend/fertilizerProjBackend/app.py
fertilizerProjBackend/fertilizerProjBackend/app.py
+13
-0
fertilizerProjBackend/fertilizerProjBackend/index.py
fertilizerProjBackend/fertilizerProjBackend/index.py
+88
-0
fertilizerProjBackend/fertilizerProjBackend/main.py
fertilizerProjBackend/fertilizerProjBackend/main.py
+239
-0
fertilizerProjBackend/fertilizerProjBackend/requirements.txt
fertilizerProjBackend/fertilizerProjBackend/requirements.txt
+138
-0
fertilizerProjBackend/fertilizerProjBackend/response.py
fertilizerProjBackend/fertilizerProjBackend/response.py
+5
-0
fertilizerProjBackend/fertilizerProjBackend/teachable_machine.py
...zerProjBackend/fertilizerProjBackend/teachable_machine.py
+97
-0
fertilizer_recommendation_app
fertilizer_recommendation_app
+1
-0
No files found.
fertilizerProjBackend/.idea/fertilizerProjBackend.iml
0 → 100644
View file @
5f7ec4f9
<?xml version="1.0" encoding="UTF-8"?>
<module
type=
"PYTHON_MODULE"
version=
"4"
>
<component
name=
"NewModuleRootManager"
>
<content
url=
"file://$MODULE_DIR$"
/>
<orderEntry
type=
"inheritedJdk"
/>
<orderEntry
type=
"sourceFolder"
forTests=
"false"
/>
</component>
<component
name=
"PyDocumentationSettings"
>
<option
name=
"format"
value=
"PLAIN"
/>
<option
name=
"myDocStringFormat"
value=
"Plain"
/>
</component>
</module>
\ No newline at end of file
fertilizerProjBackend/.idea/inspectionProfiles/profiles_settings.xml
0 → 100644
View file @
5f7ec4f9
<component
name=
"InspectionProjectProfileManager"
>
<settings>
<option
name=
"USE_PROJECT_PROFILE"
value=
"false"
/>
<version
value=
"1.0"
/>
</settings>
</component>
\ No newline at end of file
fertilizerProjBackend/.idea/misc.xml
0 → 100644
View file @
5f7ec4f9
<?xml version="1.0" encoding="UTF-8"?>
<project
version=
"4"
>
<component
name=
"ProjectRootManager"
version=
"2"
project-jdk-name=
"Python 3.9 (fertilizerProjBackend)"
project-jdk-type=
"Python SDK"
/>
</project>
\ No newline at end of file
fertilizerProjBackend/.idea/modules.xml
0 → 100644
View file @
5f7ec4f9
<?xml version="1.0" encoding="UTF-8"?>
<project
version=
"4"
>
<component
name=
"ProjectModuleManager"
>
<modules>
<module
fileurl=
"file://$PROJECT_DIR$/.idea/fertilizerProjBackend.iml"
filepath=
"$PROJECT_DIR$/.idea/fertilizerProjBackend.iml"
/>
</modules>
</component>
</project>
\ No newline at end of file
fertilizerProjBackend/.idea/vcs.xml
0 → 100644
View file @
5f7ec4f9
<?xml version="1.0" encoding="UTF-8"?>
<project
version=
"4"
>
<component
name=
"VcsDirectoryMappings"
>
<mapping
directory=
"$PROJECT_DIR$/fertilizerProjBackend"
vcs=
"Git"
/>
</component>
</project>
\ No newline at end of file
fertilizerProjBackend/.idea/workspace.xml
0 → 100644
View file @
5f7ec4f9
<?xml version="1.0" encoding="UTF-8"?>
<project
version=
"4"
>
<component
name=
"AutoImportSettings"
>
<option
name=
"autoReloadType"
value=
"SELECTIVE"
/>
</component>
<component
name=
"ChangeListManager"
>
<list
default=
"true"
id=
"effc1f58-4f9a-4fe0-8698-49968642257d"
name=
"Changes"
comment=
""
>
<change
beforePath=
"$PROJECT_DIR$/fertilizerProjBackend/index.py"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/fertilizerProjBackend/index.py"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/fertilizerProjBackend/main.py"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/fertilizerProjBackend/main.py"
afterDir=
"false"
/>
</list>
<option
name=
"SHOW_DIALOG"
value=
"false"
/>
<option
name=
"HIGHLIGHT_CONFLICTS"
value=
"true"
/>
<option
name=
"HIGHLIGHT_NON_ACTIVE_CHANGELIST"
value=
"false"
/>
<option
name=
"LAST_RESOLUTION"
value=
"IGNORE"
/>
</component>
<component
name=
"Git.Settings"
>
<option
name=
"RECENT_GIT_ROOT_PATH"
value=
"$PROJECT_DIR$/fertilizerProjBackend"
/>
</component>
<component
name=
"ProjectId"
id=
"2PrWlojrV5VD7b4PxkFMqEBbvR1"
/>
<component
name=
"ProjectViewState"
>
<option
name=
"hideEmptyMiddlePackages"
value=
"true"
/>
<option
name=
"showLibraryContents"
value=
"true"
/>
</component>
<component
name=
"PropertiesComponent"
>
<![CDATA[{
"keyToString": {
"RunOnceActivity.OpenProjectViewOnStart": "true",
"RunOnceActivity.ShowReadmeOnStart": "true",
"last_opened_file_path": "C:/Users/user/Desktop/Project/fertilizerProjBackend",
"settings.editor.selected.configurable": "preferences.fileTypes"
}
}]]>
</component>
<component
name=
"SpellCheckerSettings"
RuntimeDictionaries=
"0"
Folders=
"0"
CustomDictionaries=
"0"
DefaultDictionary=
"application-level"
UseSingleDictionary=
"true"
transferred=
"true"
/>
<component
name=
"TaskManager"
>
<task
active=
"true"
id=
"Default"
summary=
"Default task"
>
<changelist
id=
"effc1f58-4f9a-4fe0-8698-49968642257d"
name=
"Changes"
comment=
""
/>
<created>
1684215837501
</created>
<option
name=
"number"
value=
"Default"
/>
<option
name=
"presentableId"
value=
"Default"
/>
<updated>
1684215837501
</updated>
</task>
<servers
/>
</component>
</project>
\ No newline at end of file
fertilizerProjBackend/fertilizerProjBackend/app.py
0 → 100644
View file @
5f7ec4f9
from
flask
import
Flask
# Define a flask app
app
=
Flask
(
__name__
)
UPLOAD_FOLDER
=
'uploads'
app
.
secret_key
=
"secret key"
app
.
config
[
'UPLOAD_FOLDER'
]
=
UPLOAD_FOLDER
fertilizerProjBackend/fertilizerProjBackend/index.py
0 → 100644
View file @
5f7ec4f9
import
os
import
flask
import
json
from
flask
import
render_template
,
request
from
flask
import
jsonify
from
werkzeug.utils
import
secure_filename
from
app
import
app
from
main
import
getColorPrediction
,
getInsectPrediction
,
getLeafPrediction
,
predictFertilizer
@
app
.
route
(
'/'
,
methods
=
[
'GET'
])
def
index
():
# Main page
return
render_template
(
'index.html'
)
@
app
.
route
(
'/predictInsect'
,
methods
=
[
'POST'
])
def
submit_file
():
if
request
.
method
==
'POST'
:
if
'file'
not
in
request
.
files
:
return
jsonify
({
'error'
:
'No file part'
})
file
=
request
.
files
[
'file'
]
if
file
.
filename
==
''
:
return
jsonify
({
'error'
:
'No file selected for uploading'
})
if
file
:
filename
=
secure_filename
(
file
.
filename
)
file
.
save
(
os
.
path
.
join
(
app
.
config
[
'UPLOAD_FOLDER'
],
filename
))
label
,
acc
=
getInsectPrediction
(
filename
)
response
=
{
'label'
:
label
,
'probability'
:
acc
}
return
jsonify
(
response
)
else
:
return
jsonify
({
'error'
:
'Invalid request method'
})
@
app
.
route
(
'/predictColor'
,
methods
=
[
'POST'
])
def
submit_file_color
():
if
request
.
method
==
'POST'
:
if
'file'
not
in
request
.
files
:
return
jsonify
({
'error'
:
'No file part'
})
file
=
request
.
files
[
'file'
]
if
file
.
filename
==
''
:
return
jsonify
({
'error'
:
'No file selected for uploading'
})
if
file
:
filename
=
secure_filename
(
file
.
filename
)
file
.
save
(
os
.
path
.
join
(
app
.
config
[
'UPLOAD_FOLDER'
],
filename
))
label
,
acc
=
getColorPrediction
(
filename
)
response
=
{
'label'
:
label
,
'probability'
:
acc
}
return
jsonify
(
response
)
else
:
return
jsonify
({
'error'
:
'Invalid request method'
})
@
app
.
route
(
'/predictLeaf'
,
methods
=
[
'POST'
])
def
submit_file_leaf
():
if
request
.
method
==
'POST'
:
if
'file'
not
in
request
.
files
:
return
jsonify
({
'error'
:
'No file part'
})
file
=
request
.
files
[
'file'
]
if
file
.
filename
==
''
:
return
jsonify
({
'error'
:
'No file selected for uploading'
})
if
file
:
filename
=
secure_filename
(
file
.
filename
)
file
.
save
(
os
.
path
.
join
(
app
.
config
[
'UPLOAD_FOLDER'
],
filename
))
label
,
acc
=
getLeafPrediction
(
filename
)
response
=
{
'label'
:
label
,
'probability'
:
acc
}
return
jsonify
(
response
)
else
:
return
jsonify
({
'error'
:
'Invalid request method'
})
@
app
.
route
(
'/predictFertilizer'
,
methods
=
[
'POST'
])
def
submit_yield
():
msg_received
=
flask
.
request
.
get_json
()
rsp
=
predictFertilizer
(
msg_received
)
return
json
.
dumps
(
rsp
.
__dict__
)
if
__name__
==
'__main__'
:
app
.
run
(
debug
=
True
,
port
=
4000
)
fertilizerProjBackend/fertilizerProjBackend/main.py
0 → 100644
View file @
5f7ec4f9
import
tensorflow
as
tf
import
numpy
as
np
import
pandas
as
pd
from
keras_preprocessing.image
import
load_img
from
keras_preprocessing.image
import
img_to_array
from
teachable_machine
import
TeachableMachine
from
sklearn.linear_model
import
LinearRegression
from
response
import
Response
# Model Saved Path
INSECT_MODEL_PATH
=
'models/insect_type_model.h5'
INSECT_MODEL_LABELS_PATH
=
'models/insect_type_model_labels.txt'
TYPE_MODEL_PATH
=
'models/paddy_or_other_pest_model.h5'
TYPE_MODEL_LABELS_PATH
=
'models/paddy_or_other_pest_model_labels.txt'
LEAF_MODEL_PATH
=
'models/healthy_disease_leaf_model.h5'
LEAF_MODEL_LABELS_PATH
=
'models/healthy_disease_leaf_model_labels.txt'
COLOR_MODEL_PATH
=
'models/colors_level_model.h5'
COLOR_MODEL_LABELS_PATH
=
'models/colors_level_model_labels.txt'
# Define the mapping from class indices to class labels
type_class_labels
=
{
0
:
'PaddyPest'
,
1
:
'OtherPest'
}
class_labels
=
{
0
:
'rice leaf roller'
,
1
:
'rice leaf caterpillar '
,
2
:
'paddy stem maggot'
,
3
:
'asiatic rice borer'
,
4
:
'yellow rice borer'
,
5
:
'rice gall midge '
,
6
:
'Rice Stemfly'
,
7
:
'brown plant hopper'
,
8
:
'white backed plant hopper'
,
9
:
'rice leafhopper'
,
10
:
'Paddy Bug'
}
color_labels
=
{
0
:
'ColorL2'
,
1
:
'ColorL3'
,
2
:
'ColorL4'
,
3
:
'ColorL5'
,
}
leaf_labels
=
{
0
:
'Healthy'
,
1
:
'BrownSpot'
,
2
:
'Hispa'
,
3
:
'LeafBlast'
,
4
:
'Bacterialleafblight'
}
def
getInsectPrediction
(
filename
):
typeModel
=
TeachableMachine
(
model_path
=
TYPE_MODEL_PATH
,
labels_file_path
=
TYPE_MODEL_LABELS_PATH
)
image_path
=
'uploads/'
+
filename
result
=
typeModel
.
classify_image
(
image_path
)
print
(
"class_index"
,
result
[
"class_index"
])
print
(
"class_name:::"
,
result
[
"class_name"
])
print
(
"class_confidence:"
,
result
[
"class_confidence"
])
typeLabel
=
str
(
result
[
"class_name"
])
.
rstrip
()
if
typeLabel
==
'PaddyPest'
:
insectModel
=
TeachableMachine
(
model_path
=
INSECT_MODEL_PATH
,
labels_file_path
=
INSECT_MODEL_LABELS_PATH
)
image_path
=
'uploads/'
+
filename
result
=
insectModel
.
classify_image
(
image_path
)
print
(
"class_index"
,
result
[
"class_index"
])
print
(
"class_name:::"
,
result
[
"class_name"
])
print
(
"class_confidence:"
,
result
[
"class_confidence"
])
insect_label
=
str
(
result
[
"class_name"
])
.
rstrip
()
probability
=
str
(
result
[
"class_confidence"
])
return
insect_label
,
probability
else
:
print
(
'Not a paddy pest'
)
return
typeLabel
,
0.0
def
getColorPrediction
(
filename
):
colorModel
=
TeachableMachine
(
model_path
=
COLOR_MODEL_PATH
,
labels_file_path
=
COLOR_MODEL_LABELS_PATH
)
image_path
=
'uploads/'
+
filename
result
=
colorModel
.
classify_image
(
image_path
)
print
(
"class_index"
,
result
[
"class_index"
])
print
(
"class_name:::"
,
result
[
"class_name"
])
print
(
"class_confidence:"
,
result
[
"class_confidence"
])
colorLabel
=
str
(
result
[
"class_name"
])
probability
=
str
(
result
[
"class_confidence"
])
return
colorLabel
,
probability
def
getLeafPrediction
(
filename
):
model
=
TeachableMachine
(
model_path
=
LEAF_MODEL_PATH
,
labels_file_path
=
LEAF_MODEL_LABELS_PATH
)
image_path
=
'uploads/'
+
filename
result
=
model
.
classify_image
(
image_path
)
print
(
"class_index"
,
result
[
"class_index"
])
print
(
"class_name:::"
,
result
[
"class_name"
])
print
(
"class_confidence:"
,
result
[
"class_confidence"
])
label
=
str
(
result
[
"class_name"
])
probability
=
str
(
result
[
"class_confidence"
])
return
label
,
probability
def
predictFertilizer
(
msg_received
):
try
:
type
=
msg_received
[
"type"
]
year
=
msg_received
[
"year"
]
month
=
msg_received
[
"month"
]
keyWord
=
msg_received
[
"keyWord"
]
except
:
p1
=
Response
(
1
,
"Required data missing."
,
None
)
return
p1
type
=
msg_received
[
"type"
]
year
=
msg_received
[
"year"
]
month
=
msg_received
[
"month"
]
keyWord
=
msg_received
[
"keyWord"
]
data
=
()
if
type
==
'month'
:
data
=
predictFertilizerMonthly
(
int
(
year
),
int
(
month
),
keyWord
)
elif
type
==
'year'
:
data
=
predictFertilizerYearly
(
int
(
year
),
keyWord
)
.
to_dict
()
else
:
data
=
predictFertilizer
(
int
(
year
),
int
(
month
),
keyWord
)
p1
=
Response
(
0
,
"Success."
,
data
)
return
p1
def
predictFertilizerMonthly
(
year
,
predMonth
,
predKeyWord
):
year
=
year
-
1
# Read the rainfall data into a DataFrame
df
=
pd
.
read_csv
(
'csvFiles/fertilizer1.csv'
)
# Convert the date column to datetime and set it as the index
df
[
'date'
]
=
pd
.
to_datetime
(
df
[
'date'
])
df
.
set_index
(
'date'
,
inplace
=
True
)
# Create a new DataFrame that contains only the crop data
crop_df
=
df
[[
predKeyWord
]]
# Add a column for the month of each data point
crop_df
[
'month'
]
=
crop_df
.
index
.
month
# Add a column for the year of each data point
crop_df
[
'year'
]
=
crop_df
.
index
.
year
# Create a pivot table that shows the total rainfall for each month and year
rainfall_pivot
=
crop_df
.
pivot_table
(
values
=
predKeyWord
,
index
=
'year'
,
columns
=
'month'
,
aggfunc
=
'sum'
)
# Create a new DataFrame that contains only the data for the previous year
prev_year_df
=
rainfall_pivot
.
loc
[
year
]
# Drop the December rainfall data (since we're trying to predict it)
prev_year_df
.
drop
(
predMonth
,
inplace
=
True
)
# Flatten the DataFrame to create two arrays (X and y) for the linear regression model
X
=
prev_year_df
.
index
.
values
.
reshape
(
-
1
,
1
)
y
=
prev_year_df
.
values
.
reshape
(
-
1
,
1
)
# Create a linear regression model and fit it to the data
model
=
LinearRegression
()
model
.
fit
(
X
,
y
)
# Predict the rainfall for December of the current year
current_year
=
pd
.
Timestamp
.
now
()
.
year
X_pred
=
[[
current_year
]]
y_pred
=
model
.
predict
(
X_pred
)
# Print the predicted rainfall for December of the current year
print
(
'Our guess for this year
\'
s December '
+
predKeyWord
+
' is:'
,
y_pred
[
0
][
0
])
return
y_pred
[
0
][
0
]
def
predictFertilizerYearly
(
year
,
predKeyWord
):
# Read the rainfall data into a DataFrame
df
=
pd
.
read_csv
(
'csvFiles/fertilizer1.csv'
)
# Convert the date column to datetime and set it as the index
df
[
'date'
]
=
pd
.
to_datetime
(
df
[
'date'
])
df
.
set_index
(
'date'
,
inplace
=
True
)
# Create a new DataFrame that contains only the crop data
crop_df
=
df
[[
predKeyWord
]]
# Add a column for the month of each data point
crop_df
[
'month'
]
=
crop_df
.
index
.
month
# Add a column for the year of each data point
crop_df
[
'year'
]
=
crop_df
.
index
.
year
# Create a pivot table that shows the total rainfall for each month and year
rainfall_pivot
=
crop_df
.
pivot_table
(
values
=
predKeyWord
,
index
=
'year'
,
columns
=
'month'
,
aggfunc
=
'sum'
)
# Create a new DataFrame that contains only the data for the previous year
prev_year_df
=
rainfall_pivot
.
loc
[
year
-
1
]
# Drop the December rainfall data (since we're using it as the target variable)
# prev_year_df.drop(predMonth, inplace=True)
# Create a DataFrame to store the predictions
predictions_df
=
pd
.
DataFrame
(
columns
=
[
'month'
,
predKeyWord
])
# Loop over each month and make a prediction for the next year's rainfall
for
month
in
range
(
1
,
13
):
# Create a new DataFrame that contains only the data for the current month
month_df
=
prev_year_df
[[
month
]]
print
(
month_df
)
# Flatten the DataFrame to create two arrays (X and y) for the linear regression model
X
=
month_df
.
index
.
values
.
reshape
(
-
1
,
1
)
y
=
month_df
.
values
.
reshape
(
-
1
,
1
)
# Create a linear regression model and fit it to the data
model
=
LinearRegression
()
model
.
fit
(
X
,
y
)
# Predict the rainfall for the next year
next_year
=
year
X_pred
=
[[
next_year
]]
y_pred
=
model
.
predict
(
X_pred
)
# Add the prediction to the predictions DataFrame
predictions_df
=
predictions_df
.
append
({
'month'
:
month
,
predKeyWord
:
y_pred
[
0
][
0
]},
ignore_index
=
True
)
# Print the predicted rainfall for each month of the next year
return
predictions_df
fertilizerProjBackend/fertilizerProjBackend/requirements.txt
0 → 100644
View file @
5f7ec4f9
absl-py @ file:///home/conda/feedstock_root/build_artifacts/absl-py_1673535674859/work
aiohttp @ file:///Users/runner/miniforge3/conda-bld/aiohttp_1676292777256/work
aiosignal @ file:///home/conda/feedstock_root/build_artifacts/aiosignal_1667935791922/work
anyio==3.6.2
appnope @ file:///Users/ktietz/ci_310/appnope_1643965056645/work
asttokens @ file:///opt/conda/conda-bld/asttokens_1646925590279/work
astunparse @ file:///home/conda/feedstock_root/build_artifacts/astunparse_1610696312422/work
async-timeout @ file:///home/conda/feedstock_root/build_artifacts/async-timeout_1640026696943/work
asyncer==0.0.2
attrs @ file:///home/conda/feedstock_root/build_artifacts/attrs_1683424013410/work
backcall @ file:///home/ktietz/src/ci/backcall_1611930011877/work
blinker @ file:///home/conda/feedstock_root/build_artifacts/blinker_1681349778161/work
Bottleneck @ file:///private/var/folders/nz/j6p8yfhx1mv_0grj5xl4650h0000gp/T/abs_07078715-3ab7-4562-8d3d-d56b0eaa0f7dp504n_ny/croots/recipe/bottleneck_1657175566567/work
brotlipy @ file:///Users/runner/miniforge3/conda-bld/brotlipy_1666764759924/work
cached-property @ file:///home/conda/feedstock_root/build_artifacts/cached_property_1615209429212/work
cachetools @ file:///home/conda/feedstock_root/build_artifacts/cachetools_1674482203741/work
certifi==2023.5.7
cffi @ file:///Users/runner/miniforge3/conda-bld/cffi_1671179893800/work
charset-normalizer @ file:///tmp/build/80754af9/charset-normalizer_1630003229654/work
click @ file:///home/conda/feedstock_root/build_artifacts/click_1666798198223/work
coloredlogs==15.0.1
contourpy @ file:///Users/runner/miniforge3/conda-bld/contourpy_1673633760692/work
cryptography @ file:///Users/runner/miniforge3/conda-bld/cryptography-split_1681508747141/work
cycler @ file:///home/conda/feedstock_root/build_artifacts/cycler_1635519461629/work
debugpy @ file:///Users/ktietz/ci_310/debugpy_1643965577625/work
decorator @ file:///opt/conda/conda-bld/decorator_1643638310831/work
entrypoints @ file:///private/var/folders/nz/j6p8yfhx1mv_0grj5xl4650h0000gp/T/abs_croot-jb01gaox/entrypoints_1650293758411/work
executing @ file:///opt/conda/conda-bld/executing_1646925071911/work
fastapi==0.95.1
filetype==1.2.0
Flask @ file:///opt/conda/conda-bld/flask_1648041541647/work
flatbuffers @ file:///home/conda/feedstock_root/build_artifacts/python-flatbuffers_1674415895114/work
fonttools @ file:///Users/runner/miniforge3/conda-bld/fonttools_1683740659111/work
frozenlist @ file:///Users/runner/miniforge3/conda-bld/frozenlist_1667935502123/work
gast @ file:///home/conda/feedstock_root/build_artifacts/gast_1596839682936/work
google-auth @ file:///home/conda/feedstock_root/build_artifacts/google-auth_1683751600794/work
google-auth-oauthlib==0.4.1
google-pasta==0.2.0
grpcio @ file:///Users/runner/miniforge3/conda-bld/grpc-split_1670307403148/work
h11==0.14.0
h5py @ file:///Users/runner/miniforge3/conda-bld/h5py_1674499087545/work
humanfriendly==10.0
idna @ file:///home/conda/feedstock_root/build_artifacts/idna_1663625384323/work
ImageHash==4.3.1
imageio==2.28.1
importlib-metadata @ file:///home/conda/feedstock_root/build_artifacts/importlib-metadata_1682176699712/work
ipykernel @ file:///private/var/folders/nz/j6p8yfhx1mv_0grj5xl4650h0000gp/T/abs_croot-4yxj69n0/ipykernel_1647009452031/work/dist/ipykernel-6.9.1-py3-none-any.whl
ipython @ file:///private/var/folders/nz/j6p8yfhx1mv_0grj5xl4650h0000gp/T/abs_b42ce53b-9348-4ffe-874e-ee7a7d34be58zn88hkt_/croots/recipe/ipython_1651600151534/work
itsdangerous @ file:///tmp/build/80754af9/itsdangerous_1621432558163/work
jedi @ file:///private/var/folders/nz/j6p8yfhx1mv_0grj5xl4650h0000gp/T/croot-f1t6hma6/jedi_1644315882177/work
Jinja2 @ file:///opt/conda/conda-bld/jinja2_1647436528585/work
joblib @ file:///tmp/build/80754af9/joblib_1635411271373/work
jupyter-client @ file:///private/var/folders/nz/j6p8yfhx1mv_0grj5xl4650h0000gp/T/abs_37f0874a-8189-43c8-984a-7cc5aa7f2a00vekz677y/croots/recipe/jupyter_client_1650622203010/work
jupyter-core @ file:///private/var/folders/nz/j6p8yfhx1mv_0grj5xl4650h0000gp/T/abs_5839c60e-0f30-4a99-b0b9-2b009ec5fec40y9fo9ym/croots/recipe/jupyter_core_1651671230982/work
keras @ file:///Users/rkeith/miniconda3/conda-bld/keras_1678487506171/work/keras-2.11.0-py2.py3-none-any.whl
Keras-Preprocessing @ file:///home/conda/feedstock_root/build_artifacts/keras-preprocessing_1610713559828/work
kiwisolver @ file:///Users/runner/miniforge3/conda-bld/kiwisolver_1666805765141/work
lazy_loader==0.2
llvmlite==0.40.0
Markdown @ file:///home/conda/feedstock_root/build_artifacts/markdown_1679584000376/work
MarkupSafe @ file:///Users/runner/miniforge3/conda-bld/markupsafe_1674135859696/work
matplotlib @ file:///Users/runner/miniforge3/conda-bld/matplotlib-suite_1678135763500/work
matplotlib-inline @ file:///tmp/build/80754af9/matplotlib-inline_1628242447089/work
mpmath==1.3.0
multidict @ file:///Users/runner/miniforge3/conda-bld/multidict_1672339514000/work
munkres==1.1.4
nest-asyncio @ file:///private/var/folders/nz/j6p8yfhx1mv_0grj5xl4650h0000gp/T/abs_croot-xymukih3/nest-asyncio_1649931465456/work
networkx==3.1
numba==0.57.0
numexpr @ file:///private/var/folders/nz/j6p8yfhx1mv_0grj5xl4650h0000gp/T/abs_76yyu1p9jk/croot/numexpr_1683221830860/work
numpy @ file:///Users/runner/miniforge3/conda-bld/numpy_1682210346059/work
oauthlib @ file:///home/conda/feedstock_root/build_artifacts/oauthlib_1666056362788/work
onnxruntime==1.14.1
opencv-python==4.7.0
opencv-python-headless==4.7.0.72
opt-einsum @ file:///home/conda/feedstock_root/build_artifacts/opt_einsum_1617859230218/work
packaging @ file:///home/conda/feedstock_root/build_artifacts/packaging_1681337016113/work
pandas==1.5.3
parso @ file:///opt/conda/conda-bld/parso_1641458642106/work
pexpect @ file:///tmp/build/80754af9/pexpect_1605563209008/work
pickleshare @ file:///tmp/build/80754af9/pickleshare_1606932040724/work
Pillow @ file:///Users/runner/miniforge3/conda-bld/pillow_1680694547271/work
platformdirs @ file:///home/conda/feedstock_root/build_artifacts/platformdirs_1683850015520/work
pooch @ file:///home/conda/feedstock_root/build_artifacts/pooch_1679580333621/work
prompt-toolkit @ file:///tmp/build/80754af9/prompt-toolkit_1633440160888/work
protobuf==4.21.12
ptyprocess @ file:///tmp/build/80754af9/ptyprocess_1609355006118/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl
pure-eval @ file:///opt/conda/conda-bld/pure_eval_1646925070566/work
pyasn1==0.4.8
pyasn1-modules==0.2.7
pycparser @ file:///home/conda/feedstock_root/build_artifacts/pycparser_1636257122734/work
pydantic==1.10.7
Pygments @ file:///opt/conda/conda-bld/pygments_1644249106324/work
PyJWT @ file:///home/conda/feedstock_root/build_artifacts/pyjwt_1683676063469/work
PyMatting==1.1.8
pyOpenSSL @ file:///home/conda/feedstock_root/build_artifacts/pyopenssl_1680037383858/work
pyparsing @ file:///home/conda/feedstock_root/build_artifacts/pyparsing_1652235407899/work
PySocks @ file:///home/conda/feedstock_root/build_artifacts/pysocks_1661604839144/work
python-dateutil @ file:///tmp/build/80754af9/python-dateutil_1626374649649/work
python-multipart==0.0.6
pytz @ file:///private/var/folders/nz/j6p8yfhx1mv_0grj5xl4650h0000gp/T/abs_c56ru3yml9/croot/pytz_1671697451306/work
pyu2f @ file:///home/conda/feedstock_root/build_artifacts/pyu2f_1604248910016/work
PyWavelets==1.4.1
pyzmq @ file:///Users/ktietz/ci_310/pyzmq_1643964387809/work
rembg==2.0.36
requests @ file:///home/conda/feedstock_root/build_artifacts/requests_1682535435083/work
requests-oauthlib @ file:///home/conda/feedstock_root/build_artifacts/requests-oauthlib_1643557462909/work
rsa @ file:///home/conda/feedstock_root/build_artifacts/rsa_1658328885051/work
scikit-image==0.20.0
scikit-learn @ file:///Users/ktietz/ci_310/scikit-learn_1644264513665/work
scipy @ file:///Users/runner/miniforge3/conda-bld/scipy-split_1683900561684/work/base/dist/scipy-1.10.1-cp310-cp310-macosx_11_0_arm64.whl#sha256=a3c0cd42a1c134ecde8ed82f601d7bcc58f1bd7fe5f748f9322af7396f50d220
seaborn==0.12.2
six @ file:///home/conda/feedstock_root/build_artifacts/six_1620240208055/work
sniffio==1.3.0
stack-data @ file:///opt/conda/conda-bld/stack_data_1646927590127/work
starlette==0.26.1
sympy==1.12
tensorboard @ file:///Users/rkeith/miniconda3/conda-bld/tensorboard_1678488689416/work/tensorboard-2.11.0-py3-none-any.whl
tensorboard-data-server @ file:///var/folders/nz/j6p8yfhx1mv_0grj5xl4650h0000gp/T/abs_91lm1y0ip6/croot/tensorboard-data-server_1670853587549/work/tensorboard_data_server-0.6.1-py3-none-macosx_11_0_arm64.whl
tensorboard-plugin-wit @ file:///home/conda/feedstock_root/build_artifacts/tensorboard-plugin-wit_1641458951060/work/tensorboard_plugin_wit-1.8.1-py3-none-any.whl
tensorflow @ file:///Users/mark/git/feedstocks/tensorflow-feedstock/miniforge3/conda-bld/tensorflow-split_1679779258596/work/tensorflow_pkg/tensorflow-2.11.1-cp310-cp310-macosx_11_0_arm64.whl
tensorflow-estimator @ file:///Users/mark/git/feedstocks/tensorflow-feedstock/miniforge3/conda-bld/tensorflow-split_1679779258596/work/tensorflow-estimator/wheel_dir/tensorflow_estimator-2.11.0-py2.py3-none-any.whl
termcolor @ file:///home/conda/feedstock_root/build_artifacts/termcolor_1682317048417/work
threadpoolctl @ file:///Users/ktietz/demo/mc3/conda-bld/threadpoolctl_1629802263681/work
tifffile==2023.4.12
tornado @ file:///Users/ktietz/ci_310/tornado_1643969120498/work
tqdm==4.65.0
traitlets @ file:///tmp/build/80754af9/traitlets_1636710298902/work
typing_extensions @ file:///home/conda/feedstock_root/build_artifacts/typing_extensions_1678559861143/work
unicodedata2 @ file:///Users/runner/miniforge3/conda-bld/unicodedata2_1667239979860/work
urllib3 @ file:///home/conda/feedstock_root/build_artifacts/urllib3_1678635778344/work
uvicorn==0.22.0
watchdog==3.0.0
wcwidth @ file:///Users/ktietz/demo/mc3/conda-bld/wcwidth_1629357192024/work
Werkzeug @ file:///home/conda/feedstock_root/build_artifacts/werkzeug_1683636301408/work
wrapt @ file:///Users/runner/miniforge3/conda-bld/wrapt_1677485667378/work
yarl @ file:///Users/runner/miniforge3/conda-bld/yarl_1682426738484/work
zipp @ file:///home/conda/feedstock_root/build_artifacts/zipp_1677313463193/work
fertilizerProjBackend/fertilizerProjBackend/response.py
0 → 100644
View file @
5f7ec4f9
class
Response
:
def
__init__
(
self
,
code
,
message
,
data
):
self
.
code
=
code
self
.
message
=
message
self
.
data
=
data
fertilizerProjBackend/fertilizerProjBackend/teachable_machine.py
0 → 100644
View file @
5f7ec4f9
from
keras.models
import
load_model
from
PIL
import
Image
,
ImageOps
import
numpy
as
np
class
TeachableMachine
(
object
):
'''
Create your TeachableMachine object to run your trained AI models.
'''
def
__init__
(
self
,
model_path
=
'keras_model.h5'
,
labels_file_path
=
'labels.txt'
,
model_type
=
'h5'
)
->
None
:
self
.
_model_type
=
model_type
.
lower
()
self
.
_labels_file_path
=
labels_file_path
self
.
_supported_types
=
(
'keras'
,
'Keras'
,
'h5'
,
'h5py'
)
np
.
set_printoptions
(
suppress
=
True
)
try
:
self
.
_model
=
load_model
(
model_path
,
compile
=
False
)
except
IOError
as
e
:
print
(
'LoadingModelError: Error while loading Teachable Machine model'
)
raise
IOError
(
e
)
except
:
print
(
"LoadingModelError: Error while loading Teachable Machine model"
)
raise
FileNotFoundError
try
:
self
.
_labels_file
=
open
(
self
.
_labels_file_path
,
"r"
)
.
readlines
()
except
IOError
as
e
:
print
(
'LoadingLabelsError: Error while loading labels.txt file'
)
raise
IOError
(
e
)
except
:
print
(
"LoadingLabelsError: Error while loading labels.txt file"
)
raise
FileNotFoundError
self
.
_object_creation_status
=
self
.
_model_type
in
self
.
_supported_types
if
self
.
_object_creation_status
:
print
(
'Teachable Machine Object is created successfully.'
)
else
:
raise
'NotSupportedType: Your model type is not supported, try to use types such as "keras" or "h5".'
def
classify_image
(
self
,
frame_path
:
str
):
'''To deploy your Teachable Machine Model on a computer/PC
with .h5 extension using TensorFlow.
Parameters:
* (str) frame_path: Provide path of the image to be classified.
Returns:
* class_name: Name of the highest predicted class according to labels.txt file
* class_index: Index or ID of the highest predicted class according to labels.txt file
* predictions: All prediction values for all classes.
'''
try
:
frame
=
Image
.
open
(
frame_path
)
if
frame
.
mode
!=
"RGB"
:
frame
=
frame
.
convert
(
"RGB"
)
except
FileNotFoundError
as
e
:
print
(
"ImageNotFound: Error in image file."
)
raise
FileNotFoundError
(
e
)
except
TypeError
as
e
:
print
(
"ImageTypeError: Error while converting image to RGB format, image type is not supported"
)
try
:
if
self
.
_object_creation_status
:
return
self
.
_get_image_classification
(
frame
)
except
BaseException
as
e
:
print
(
'Error in classification process, retrain your model.'
)
raise
e
def
_get_image_classification
(
self
,
image
):
data
=
self
.
_form_image
(
image
)
prediction
=
self
.
_model
.
predict
(
data
)
class_index
=
np
.
argmax
(
prediction
)
class_name
=
self
.
_labels_file
[
class_index
]
class_confidence
=
prediction
[
0
][
class_index
]
return
{
"class_name"
:
class_name
[
2
:],
"highest_class_name"
:
class_name
[
2
:],
"highest_class_id"
:
class_index
,
"class_index"
:
class_index
,
"class_id"
:
class_index
,
"predictions"
:
prediction
,
"all_predictions"
:
prediction
,
"class_confidence"
:
class_confidence
,
"highest_class_confidence"
:
class_confidence
,
}
def
_form_image
(
self
,
image
):
image_data
=
np
.
ndarray
(
shape
=
(
1
,
224
,
224
,
3
),
dtype
=
np
.
float32
)
crop_size
=
(
224
,
224
)
image
=
ImageOps
.
fit
(
image
,
crop_size
,
Image
.
Resampling
.
LANCZOS
)
image_array
=
np
.
asarray
(
image
)
normalized_image_array
=
(
image_array
.
astype
(
np
.
float32
)
/
127.0
)
-
1
image_data
[
0
]
=
normalized_image_array
return
image_data
fertilizer_recommendation_app
@
6ab1067a
Subproject commit 6ab1067a166b8de8b41ec98432f6b257192c5ae8
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment