Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
A
AAGGY
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
23-153
AAGGY
Commits
27cddcbc
Commit
27cddcbc
authored
Nov 03, 2023
by
Sajana_it20194130
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
66137f67
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
33 additions
and
0 deletions
+33
-0
DUMP.py
DUMP.py
+33
-0
No files found.
DUMP.py
0 → 100644
View file @
27cddcbc
# Importing the libraries
import
numpy
as
np
import
joblib
from
sklearn.preprocessing
import
StandardScaler
# Load the trained model
loaded_model
=
joblib
.
load
(
'random_forest_model.joblib'
)
scaler
=
joblib
.
load
(
'standard_scaler.joblib'
)
# Accept user inputs for two numerical parameters
param1
=
float
(
input
(
"Enter the file size: "
))
param2
=
float
(
input
(
"Enter the header size: "
))
user_input
=
scaler
.
transform
(
np
.
array
([[
param1
,
param2
]]))
# Make predictions based on the user inputs
prediction
=
loaded_model
.
predict
(
user_input
)
# Display the prediction
print
(
"Predicted class:"
,
prediction
[
0
])
## 205824 1024
## 241664 4096
## 405504 512
## 30208 512
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment