Commit 18ae2d6f authored by Chellapillai C.V.S's avatar Chellapillai C.V.S

Added

parent 19b0b8be
This source diff could not be displayed because it is too large. You can view the blob instead.
import os
import sys
import json
import datetime
import numpy as np
import skimage.draw
import cv2
from mrcnn.visualize import display_instances
import matplotlib.pyplot as plt
# Root directory of the project
ROOT_DIR = "E:\Calories"
# Import Mask RCNN
sys.path.append(ROOT_DIR) # To find local version of the library
from mrcnn.config import Config
from mrcnn import model as modellib, utils
calorie_per_sq_inch={'smashed potatoes':1.4778,'carrots':0.7256,'spanich':0.4102,'veal breaded cutlet':4.4247,'scallops':0.9823,'beans':0.5486,'pizza':6.2477,'pasta':3.5398}
# Path to trained weights file
COCO_WEIGHTS_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
# Directory to save logs and model checkpoints, if not provided
# through the command line argument --logs
DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, "logs")
def get_calorie(class_name,real_food_area):
if class_name in calorie_per_unit:
return calorie_per_unit[class_name]
else:
return calorie_per_sq_inch[class_name]*real_food_area
class CustomConfig(Config):
"""Configuration for training on the custom dataset.
Derives from the base Config class and overrides some values.
"""
# Give the configuration a recognizable name
NAME = "food"
# We use a GPU with 12GB memory, which can fit two images.
# Adjust down if you use a smaller GPU.
IMAGES_PER_GPU = 2
# Number of classes (including background)
NUM_CLASSES = 1 + 10
# Number of training steps per epoch
STEPS_PER_EPOCH = 250
# Skip detections with < 90% confidence
DETECTION_MIN_CONFIDENCE = 0.9
############################################################
# Dataset
############################################################
class CustomDataset(utils.Dataset):
def load_custom(self, dataset_dir, subset):
"""Load a subset of the Dog-Cat dataset.
dataset_dir: Root directory of the dataset.
subset: Subset to load: train or val
"""
# Add classes. We have only one class to add.
self.add_class("food", 1, "mashed potatoes")
self.add_class("food", 2, "pasta")
self.add_class("food", 3, "pizza")
self.add_class("food", 4, "beans")
self.add_class("food", 5, "chicken")
self.add_class("food", 6, "orange")
self.add_class("food", 7, "yogurt")
self.add_class("food", 8, "spinach")
self.add_class("food", 9, "bread")
self.add_class("food", 10, "veal breaded cutlet")
# Train or validation dataset?
assert subset in ["train", "val"]
dataset_dir = os.path.join(dataset_dir, subset)
# Load annotations
# VGG Image Annotator saves each image in the form:
# { 'filename': '28503151_5b5b7ec140_b.jpg',
# 'regions': {
# '0': {
# 'region_attributes': {},
# 'shape_attributes': {
# 'all_points_x': [...],
# 'all_points_y': [...],
# 'name': 'polygon'}},
# ... more regions ...
# },
# 'size': 100202
# }
# We mostly care about the x and y coordinates of each region
annotations1 = json.load(open(r'E:\Calories\dataset\train\annotation.json'))
#annotations2 = json.load(open(r'E:\Calories\dataset\val\demo_json.json'))
# print(annotations1)
annotations = list(annotations1.values()) # don't need the dict keys
# The VIA tool saves images in the JSON even if they don't have any
# annotations. Skip unannotated images.
annotations = [a for a in annotations if a['regions']]
# Add images
for a in annotations:
# print(a)
# Get the x, y coordinaets of points of the polygons that make up
# the outline of each object instance. There are stores in the
# shape_attributes (see json format above)
polygons = [r['shape_attributes'] for r in a['regions']]
objects = [s['region_attributes']['food'] for s in a['regions']]
print("objects:",objects)
#name_dict = {"laptop": 1,"tab": 2,"phone": 3}
name_dict = {"mashed potatoes": 1,"pasta": 2 , "pizza": 3,"beans": 4,"chicken": 5,"orange": 6,"yogurt": 7,"spinach": 8,"bread": 9,"veal breaded cutlet": 10}
# key = tuple(name_dict)
num_ids = [name_dict[a] for a in objects]
# num_ids = [int(n['Event']) for n in objects]
# load_mask() needs the image size to convert polygons to masks.
# Unfortunately, VIA doesn't include it in JSON, so we must read
# the image. This is only managable since the dataset is tiny.
print("numids",num_ids)
image_path = os.path.join(dataset_dir, a['filename'])
image = skimage.io.imread(image_path)
height, width = image.shape[:2]
self.add_image(
"food", ## for a single class just add the name here
image_id=a['filename'], # use file name as a unique image id
path=image_path,
width=width, height=height,
polygons=polygons,
num_ids=num_ids
)
def load_mask(self, image_id):
"""Generate instance masks for an image.
Returns:
masks: A bool array of shape [height, width, instance count] with
one mask per instance.
class_ids: a 1D array of class IDs of the instance masks.
"""
# If not a Dog-Cat dataset image, delegate to parent class.
image_info = self.image_info[image_id]
if image_info["source"] != "food":
return super(self.__class__, self).load_mask(image_id)
# Convert polygons to a bitmap mask of shape
# [height, width, instance_count]
info = self.image_info[image_id]
if info["source"] != "food":
return super(self.__class__, self).load_mask(image_id)
num_ids = info['num_ids']
mask = np.zeros([info["height"], info["width"], len(info["polygons"])],
dtype=np.uint8)
for i, p in enumerate(info["polygons"]):
# Get indexes of pixels inside the polygon and set them to 1
rr, cc = skimage.draw.polygon(p['all_points_y'], p['all_points_x'])
mask[rr, cc, i] = 1
# Return mask, and array of class IDs of each instance. Since we have
# one class ID only, we return an array of 1s
# Map class names to class IDs.
num_ids = np.array(num_ids, dtype=np.int32)
return mask, num_ids #np.ones([mask.shape[-1]], dtype=np.int32)
def image_reference(self, image_id):
"""Return the path of the image."""
info = self.image_info[image_id]
if info["source"] == "food":
return info["path"]
else:
super(self.__class__, self).image_reference(image_id)
def train(model):
"""Train the model."""
# Training dataset.
dataset_train = CustomDataset()
dataset_train.load_custom(r"E:\Calories\dataset", "train")
dataset_train.prepare()
# Validation dataset
dataset_val = CustomDataset()
dataset_val.load_custom(r"E:\Calories\dataset", "val")
dataset_val.prepare()
# *** This training schedule is an example. Update to your needs ***
# Since we're using a very small dataset, and starting from
# COCO trained weights, we don't need to train too long. Also,
# no need to train all layers, just the heads should do it.
print("Training network heads")
model.train(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE,
epochs=250,
layers='heads')
config = CustomConfig()
model = modellib.MaskRCNN(mode="training", config=config,
model_dir=DEFAULT_LOGS_DIR)
weights_path = COCO_WEIGHTS_PATH
# Download weights file
if not os.path.exists(weights_path):
utils.download_trained_weights(weights_path)
model.load_weights(weights_path, by_name=True, exclude=[
"mrcnn_class_logits", "mrcnn_bbox_fc",
"mrcnn_bbox", "mrcnn_mask"])
train(model)
\ No newline at end of file
This source diff could not be displayed because it is too large. You can view the blob instead.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment