Commit 7cca654f authored by Malsha Rathnasiri's avatar Malsha Rathnasiri

add authentication and temporary remove tensorflow

parent 88281141
import React, { createContext, useContext, useState, useEffect, useLayoutEffect } from "react";
import axios from "axios";
import { LOCALHOST } from "./constants";
// import { nexlAxios } from "../../constants/helper";
import AsyncStorage from "@react-native-async-storage/async-storage";
// import {
// IAuthContext,
// IAuthRequest,
// STORAGE_BEARER_TOKEN,
// UNINITIALISED,
// USER_EMAIL,
// } from "./IAuthContext";
// import { Loading } from "./state/Loading";
// import { getEnvironment } from "../../constants/variables";
// import { AxiosError, AxiosResponse } from "axios";
// import { rollbar } from "./ErrorBoundary";
// import { ENDPOINT as endpoint } from "./constants";
// const AuthContext = createContext({
// isLoggedIn: false,
// token: "",
// email: "",
// error: "",
// loading: false,
// initialised: false,
// login: UNINITIALISED,
// logout: UNINITIALISED,
// });
// export const useAuthContext = () => useContext(AuthContext);
// export const AuthConsumer = AuthContext.Consumer;
// interface IProps {
// children: any;
// }
// interface ILoginData {
// error: string;
// user: {
// email: string;
// id: string;
// first_name: string;
// last_name: string;
// };
// }
// const endpoint = getEnvironment().endpoint;
export const login = async (username, password) => {
const endpoint = false ? 'register' : 'login';
const payload = { username: username, password: password }
const headers = new Headers({ "Content-Type": 'application./json','mode': 'no-cors', 'Access-Control-Allow-Headers': '*' })
const options = { method: 'POST', data: payload, headers }
axios.defaults.baseURL = 'http://127.0.0.1:8000';
axios.defaults.timeout = 1500;
console.log({payload})
return axios.post('/api/auth/token/obtain/', payload)
.then(response => {
const { access, refresh, user } = response.data;
axios.defaults.headers.common.Authorization = `Token ${token}`;
AsyncStorage.setItem('user_id', user.id)
AsyncStorage.setitem('username',user.username)
AsyncStorage.setItem('user_email', user.email)
AsyncStorage.setitem('access_token', access)
AsyncStorage.setItem('refresh_token', refresh)
console.log("login successful")
return true
// Actions.main();
})
.catch(error => {
throw Error(error)
});
}
// export const AuthProvider = ({ children }) => {
// const [isLoggedIn, setIsLoggedIn] = useState(false);
// const [token, setToken] = useState("");
// const [email, setEmail] = useState("");
// const [error, setError] = useState("");
// const [loading, setLoading] = useState(false);
// const [initialised, setInitialised] = useState(false);
// const login = async ({ email, password, rememberMe }) => {
// setLoading(true);
// nexlAxios(false)
// .post(`${endpoint}/accounts/sign_in.json`, {
// source: "iOS app",
// account: {
// email,
// password,
// remember_me: rememberMe ? "1" : "0",
// },
// })
// .then(async (response) => {
// setLoading(false);
// const user = response.data.user;
// user.email && setIsLoggedIn(true);
// const token = response.headers["authorization"];
// setToken(token);
// await AsyncStorage.setItem(USER_EMAIL, email);
// setEmail(email);
// rollbar.setPerson(user.id, `${user.first_name} ${user.last_name}`, user.email);
// })
// .catch((result) => {
// setLoading(false);
// setError(
// result?.response?.data?.error || result?.message || "An unknown error has occurred.",
// );
// });
// };
// const loginWithBearerToken = async (bearer) => {
// if (bearer) {
// setLoading(true);
// await nexlAxios(false, bearer)
// .post(`${endpoint}/accounts/sign_in.json`, undefined, {
// headers: {
// Authorization: bearer,
// },
// })
// .then((response) => {
// setLoading(false);
// const user = response.data.user;
// user.email && setIsLoggedIn(true);
// rollbar.setPerson(user.id, `${user.first_name} ${user.last_name}`, user.email);
// })
// .catch(() => {
// setLoading(false);
// setToken("");
// });
// }
// };
// const logout = async () => {
// const token = await AsyncStorage.getItem(STORAGE_BEARER_TOKEN);
// token && (await nexlAxios(false, token).post(`${endpoint}/sign_out.json`));
// setToken("");
// setIsLoggedIn(false);
// await AsyncStorage.removeItem(STORAGE_BEARER_TOKEN);
// rollbar.clearPerson();
// };
// // look if token / email exist in local storage on initialising the app
// // if token exists, try log in with token
// useLayoutEffect(() => {
// let isMounted = true;
// const initialise = async () => {
// const bearerToken = await AsyncStorage.getItem(STORAGE_BEARER_TOKEN);
// setToken(bearerToken || "");
// const userEmail = await AsyncStorage.getItem(USER_EMAIL);
// setEmail(userEmail || "");
// bearerToken && (await loginWithBearerToken(bearerToken));
// setInitialised(true);
// };
// if (isMounted) {
// initialise();
// }
// return () => {
// isMounted = false;
// };
// }, []);
// // update token to local storage on token change
// useEffect(() => {
// AsyncStorage.setItem(STORAGE_BEARER_TOKEN, token);
// }, [token]);
// return (
// <AuthContext.Provider
// value={{
// login,
// isLoggedIn,
// logout,
// token,
// email: email.toLowerCase(),
// loading,
// error,
// initialised,
// }}
// >
// {initialised ? children : <Loading copy="Logging in..." />}
// </AuthContext.Provider>
// );
// };
\ No newline at end of file
export const LOCALHOST = "http://127.0.0.1:8000"
\ No newline at end of file
import React, { createContext, useContext, useState, useEffect, useLayoutEffect } from "react";
import { nexlAxios } from "../../constants/helper";
import AsyncStorage from "@react-native-community/async-storage";
import {
IAuthContext,
IAuthRequest,
STORAGE_BEARER_TOKEN,
UNINITIALISED,
USER_EMAIL,
} from "./IAuthContext";
import { Loading } from "./state/Loading";
import { getEnvironment } from "../../constants/variables";
import { AxiosError, AxiosResponse } from "axios";
import { rollbar } from "./ErrorBoundary";
const AuthContext = createContext({
isLoggedIn: false,
token: "",
email: "",
error: "",
loading: false,
initialised: false,
login: UNINITIALISED,
logout: UNINITIALISED,
});
export const useAuthContext = () => useContext(AuthContext);
export const AuthConsumer = AuthContext.Consumer;
// interface IProps {
// children: any;
// }
// interface ILoginData {
// error: string;
// user: {
// email: string;
// id: string;
// first_name: string;
// last_name: string;
// };
// }
const endpoint = getEnvironment().endpoint;
export const AuthProvider= ({ children }) => {
const [isLoggedIn, setIsLoggedIn] = useState(false);
const [token, setToken] = useState("");
const [email, setEmail] = useState("");
const [error, setError] = useState("");
const [loading, setLoading] = useState(false);
const [initialised, setInitialised] = useState(false);
const login = async ({ email, password, rememberMe }) => {
setLoading(true);
nexlAxios(false)
.post(`${endpoint}/accounts/sign_in.json`, {
source: "iOS app",
account: {
email,
password,
remember_me: rememberMe ? "1" : "0",
},
})
.then(async (response) => {
setLoading(false);
const user = response.data.user;
user.email && setIsLoggedIn(true);
const token = response.headers["authorization"];
setToken(token);
await AsyncStorage.setItem(USER_EMAIL, email);
setEmail(email);
rollbar.setPerson(user.id, `${user.first_name} ${user.last_name}`, user.email);
})
.catch((result) => {
setLoading(false);
setError(
result?.response?.data?.error || result?.message || "An unknown error has occurred.",
);
});
};
const loginWithBearerToken = async (bearer) => {
if (bearer) {
setLoading(true);
await nexlAxios(false, bearer)
.post(`${endpoint}/accounts/sign_in.json`, undefined, {
headers: {
Authorization: bearer,
},
})
.then((response) => {
setLoading(false);
const user = response.data.user;
user.email && setIsLoggedIn(true);
rollbar.setPerson(user.id, `${user.first_name} ${user.last_name}`, user.email);
})
.catch(() => {
setLoading(false);
setToken("");
});
}
};
const logout = async () => {
const token = await AsyncStorage.getItem(STORAGE_BEARER_TOKEN);
token && (await nexlAxios(false, token).post(`${endpoint}/sign_out.json`));
setToken("");
setIsLoggedIn(false);
await AsyncStorage.removeItem(STORAGE_BEARER_TOKEN);
rollbar.clearPerson();
};
// look if token / email exist in local storage on initialising the app
// if token exists, try log in with token
useLayoutEffect(() => {
let isMounted = true;
const initialise = async () => {
const bearerToken = await AsyncStorage.getItem(STORAGE_BEARER_TOKEN);
setToken(bearerToken || "");
const userEmail = await AsyncStorage.getItem(USER_EMAIL);
setEmail(userEmail || "");
bearerToken && (await loginWithBearerToken(bearerToken));
setInitialised(true);
};
if (isMounted) {
initialise();
}
return () => {
isMounted = false;
};
}, []);
// update token to local storage on token change
useEffect(() => {
AsyncStorage.setItem(STORAGE_BEARER_TOKEN, token);
}, [token]);
return (
<AuthContext.Provider
value={{
login,
isLoggedIn,
logout,
token,
email: email.toLowerCase(),
loading,
error,
initialised,
}}
>
{initialised ? children : <Loading copy="Logging in..." />}
</AuthContext.Provider>
);
};
\ No newline at end of file
......@@ -9,13 +9,14 @@ import { NavigationContainer, DefaultTheme, DarkTheme } from '@react-navigation/
import { createNativeStackNavigator } from '@react-navigation/native-stack';
import * as React from 'react';
import { ColorSchemeName, Pressable } from 'react-native';
import { login } from '../api/Authentication';
import Colors from '../constants/Colors';
import useColorScheme from '../hooks/useColorScheme';
import { LoginScreen } from '../screens/loginScreen';
import ModalScreen from '../screens/ModalScreen';
import NotFoundScreen from '../screens/NotFoundScreen';
import TabOneScreen from '../screens/TabOneScreen';
import ChatScreen from '../screens/TabOneScreen';
import TabTwoScreen from '../screens/TabTwoScreen';
import { RootStackParamList, RootTabParamList, RootTabScreenProps } from '../types';
import LinkingConfiguration from './LinkingConfiguration';
......@@ -40,22 +41,18 @@ function RootNavigator() {
const [isAuthenticated, setIsAutheticated] = React.useState(false)
const onLogin = () => {
setIsAutheticated(true)
const onLogin = async (username: String, password: String) => {
await login(username, password).then(() => setIsAutheticated(true)).catch(e => console.log(e))
}
const onLogout = () => {
setIsAutheticated(false)
}
return (
<Stack.Navigator >
{isAuthenticated ? <Stack.Screen name="Root" options={{ headerShown: false }}>{(props) => <BottomTabNavigator {...props} onLogout={onLogout}/>}</Stack.Screen> :
<Stack.Screen name='Login'>{(props) => <LoginScreen {...props} onLogin={onLogin} />}</Stack.Screen>}
{isAuthenticated ? <Stack.Screen name="Root" options={{ headerShown: false }}>{(props) => <BottomTabNavigator {...props} onLogout={onLogout} />}</Stack.Screen> :
<Stack.Screen name='Root'>{(props) => <LoginScreen {...props} onLogin={onLogin} />}</Stack.Screen>}
<Stack.Screen name="NotFound" component={NotFoundScreen} options={{ title: 'Oops!' }} />
......@@ -72,7 +69,7 @@ function RootNavigator() {
*/
const BottomTab = createBottomTabNavigator<RootTabParamList>();
function BottomTabNavigator({onLogout}) {
function BottomTabNavigator({ onLogout }) {
const colorScheme = useColorScheme();
return (
......@@ -83,7 +80,7 @@ function BottomTabNavigator({onLogout}) {
}}>
<BottomTab.Screen
name="TabOne"
component={TabOneScreen}
component={ChatScreen}
options={({ navigation }: RootTabScreenProps<'TabOne'>) => ({
title: 'Chat',
tabBarIcon: ({ color }) => <TabBarIcon name="code" color={color} />,
......
......@@ -15,6 +15,7 @@
},
"dependencies": {
"@expo/vector-icons": "^12.0.0",
"@react-native-async-storage/async-storage": "~1.15.0",
"@react-navigation/bottom-tabs": "^6.0.5",
"@react-navigation/native": "^6.0.2",
"@react-navigation/native-stack": "^6.1.0",
......
import React, { useEffect, useState } from 'react'
import { FlatList, StyleSheet, TextInput, SectionList } from 'react-native';
import { AudioRecorder } from '../components/AudioRecorder';
import _ from 'lodash'
import EditScreenInfo from '../components/EditScreenInfo';
import { Text, View } from '../components/Themed';
import { RootTabScreenProps } from '../types';
export default function ChatScreen({ navigation }) {
const currentTime = new Date()
const defaultChatData = [{ from: 'esh', to: "dri", message: 'msg1', time: currentTime.setMinutes(currentTime.getMinutes() - 1) },
{ from: 'esh', to: "dri", message: 'msg2', time: currentTime.setMinutes(currentTime.getMinutes() - 2) },
{ from: 'dri', to: "esh", message: 'msg3', time: currentTime.setMinutes(currentTime.getMinutes() - 3) },
{ from: 'esh', to: "dri", message: 'msg4', time: currentTime.setMinutes(currentTime.getMinutes() - 4) },
{ from: 'dri', to: "esh", message: 'msg5', time: currentTime.setMinutes(currentTime.getMinutes() - 5) },
{ from: 'esh', to: "dri", message: 'msg1', time: currentTime.setDate(currentTime.getDate() - 1) },
{ from: 'esh', to: "dri", message: 'msg2', time: currentTime.setDate(currentTime.getDate() - 2) },
{ from: 'dri', to: "esh", message: 'msg3', time: currentTime.setDate(currentTime.getDate() - 3) },
{ from: 'esh', to: "dri", message: 'msg4', time: currentTime.setDate(currentTime.getDate() - 4) },
{ from: 'dri', to: "esh", message: 'msg5', time: currentTime.setDate(currentTime.getDate() - 5) },
]
const [detectedText, setDetectedText] = useState("")
const [chatDetails, setChatDetails] = useState({ from: "esh", to: 'dri' })
const [chats, setChats] = useState(defaultChatData)
const ws = new WebSocket('ws://localhost:3000/ws')
const sections = [...new Set(chats.map(chat => new Date(chat.time).setHours(0, 0, 0, 0)))];
const sectionChats = sections.map(section => ({ title: section, data: chats.filter(chat => new Date(chat.time).setHours(0, 0, 0, 0) == section) }))
// useEffect(() => {
// startWebsocket()
// }, [])
const startWebsocket = () => {
ws.onopen = () => {
// on connecting, do nothing but log it to the console
console.log('connected')
}
ws.onmessage = evt => {
// listen to data sent from the websocket server
const message = JSON.parse(evt.data)
// setState({ dataFromServer: message })
console.log(message)
}
ws.onclose = () => {
console.log('disconnected')
// automatically try to reconnect on connection loss
}
}
return (
<View style={styles.container}>
{/* <Text style={styles.title}>Tab One</Text>
<View style={{height: 70, width: 100, backgroundColor: ''}}><TextInput style={{borderColor: 'white', borderWidth: 1, alignSelf: }} onChange={() => console.log('change')}></TextInput></View>
<View style={styles.separator} lightColor="#000" darkColor="rgba(255,0,255,0.1)" />
<EditScreenInfo path="/screens/TabOneScreen.tsx" /> */}
<View style={{ flex: 1, width: '100%' }}>
<View style={{ display: 'flex', flex: 0.9, justifyContent: 'space-between' }}>
{/* <View style={{ alignItems: 'center', justifyContent: 'center', flex: 1}}><Text style={{ fontSize: 50, color: 'white' }}>{detectedText}</Text>
</View> */}
<SectionList
inverted={true}
sections={sectionChats}
keyExtractor={(item, index) => item + index}
renderItem={({ item }) => {
// console.log({ item })
return (
<View style={{ margin: 5, padding: 5 }}><Text
style={[{ textAlign: chatDetails.from == item.from ? 'right' : 'left', backgroundColor: 'blue', borderRadius: 5, padding: 5 },
chatDetails.from == item.from ? { marginLeft: 'auto' } : { marginRight: 'auto' }
]}
key={item.time}>{item.message}</Text>
<Text style={{ textAlign: chatDetails.from == item.from ? 'right' : 'left', color: 'gray' }}>{new Date(item.time).toLocaleTimeString().slice(0, 5)}</Text></View>
)
}}
invertStickyHeaders
renderSectionFooter={({ section: { title } }) => {
var date = ""
if (new Date(title).toLocaleDateString() == new Date().toLocaleDateString()) {
date = "Today"
}
// else if (new Date(title).toLocaleDateString() == new Date().setDate(new Date().getDate() - 1).toLocaleDateString()){
// date = "Yesterday"
// }
else {
date = new Date(title).toLocaleDateString()
}
return (
<Text style={styles.header}>{date}</Text>
)
}}
/>
{/* <FlatList
inverted={true}
style={{ alignContent: 'flex-end' }}
data={chats}
keyExtractor={(item) => item.currentTime}
renderItem={({ item }) => {
console.log({ item })
return (
<View style={{ margin: 5, padding: 5 }}><Text
style={[{ textAlign: chatDetails.from == item.from ? 'right' : 'left', backgroundColor: 'blue', borderRadius: 5, padding: 5 },
chatDetails.from == item.from ? { marginLeft: 'auto' } : { marginRight: 'auto' }
]}
key={item.time}>{item.message}</Text>
<Text style={{ textAlign: chatDetails.from == item.from ? 'right' : 'left', color: 'gray' }}>{new Date(item.time).toLocaleTimeString().slice(0, 5)}</Text></View>
)
}} /> */}
</View>
<View style={{ flex: 0.1, backgroundColor: 'rgb(10,10,10)' }}>
<View style={{ flexDirection: 'row', display: 'flex', height: '100%' }}>
<View style={{ flex: 0.8, backgroundColor: 'rgb(10,10,10)', height: '100%' }}></View>
<View style={{ flex: 0.2, backgroundColor: 'rgb(10,10,10)', height: '100%' }}><AudioRecorder setDetectedText={setDetectedText} /></View>
</View>
</View>
</View>
</View>
);
}
const styles = StyleSheet.create({
container: {
flex: 1,
alignItems: 'center',
justifyContent: 'center',
},
title: {
fontSize: 20,
fontWeight: 'bold',
},
separator: {
marginVertical: 30,
height: 1,
width: '80%',
},
convoFooter: {
},
header: { textAlign: 'center', backgroundColor: 'gray', marginRight: 'auto', marginLeft: 'auto', padding: 3, borderRadius: 5 }
});
import React, { useState } from 'react'
import { StyleSheet, TextInput } from 'react-native';
import { AudioRecorder } from '../components/AudioRecorder';
import EditScreenInfo from '../components/EditScreenInfo';
import { Text, View } from '../components/Themed';
import { RootTabScreenProps } from '../types';
export default function TabOneScreen({ navigation }: RootTabScreenProps<'TabOne'>) {
const [detectedText, setDetectedText] = useState("")
return (
<View style={styles.container}>
{/* <Text style={styles.title}>Tab One</Text>
<View style={{height: 70, width: 100, backgroundColor: ''}}><TextInput style={{borderColor: 'white', borderWidth: 1, alignSelf: }} onChange={() => console.log('change')}></TextInput></View>
<View style={styles.separator} lightColor="#000" darkColor="rgba(255,0,255,0.1)" />
<EditScreenInfo path="/screens/TabOneScreen.tsx" /> */}
<View style={{ flex: 1, width: '100%' }}>
<View style={{ display: 'flex', flex: 0.9, backgroundColor: 'green' }}>
<View style={{ alignItems: 'center', justifyContent: 'center', height: '100%'}}><Text style={{fontSize: 50, color: 'white'}}>{detectedText}</Text></View>
</View>
<View style={{ flex: 0.1, backgroundColor: 'rgb(10,10,10)'}}>
<View style={{ flexDirection: 'row', display: 'flex', height: '100%' }}>
<View style={{ flex: 0.8, backgroundColor: 'rgb(10,10,10)', height: '100%' }}></View>
<View style={{ flex: 0.2, backgroundColor: 'rgb(10,10,10)', height:'100%'}}><AudioRecorder setDetectedText={setDetectedText} /></View>
</View>
</View>
</View>
</View>
);
}
const styles = StyleSheet.create({
container: {
flex: 1,
alignItems: 'center',
justifyContent: 'center',
},
title: {
fontSize: 20,
fontWeight: 'bold',
},
separator: {
marginVertical: 30,
height: 1,
width: '80%',
},
convoFooter: {
}
});
import React from 'react'
import { StyleSheet, TextInput} from 'react-native';
import React, { useState } from 'react'
import { StyleSheet, TextInput } from 'react-native';
import EditScreenInfo from '../components/EditScreenInfo';
import { Text, View } from '../components/Themed';
import { TouchableOpacity } from 'react-native';
const LoginForm = ({onLogin}) => {
const LoginForm = ({ onLogin }) => {
var passwordInput
const [username, setUsername] = useState('')
const [password, setPassword] = useState('')
return (
<>
<TextInput style={styles.input}
defaultValue={username}
onChange={(e) => {
console.log(username);
setUsername(e.target.value)}}
autoCapitalize="none"
// onSubmitEditing={() => passwordInput.focus()}
onSubmitEditing={() => passwordInput.focus()}
autoCorrect={false}
keyboardType='email-address'
returnKeyType="next"
......@@ -21,6 +28,8 @@ const LoginForm = ({onLogin}) => {
placeholderTextColor='rgba(225,225,225,0.7)' />
<TextInput style={styles.input}
defaultValue={password}
onChange={(e) => setPassword(e.target.value)}
returnKeyType="go"
ref={(input) => passwordInput = input}
placeholder='Password'
......@@ -29,7 +38,10 @@ const LoginForm = ({onLogin}) => {
<TouchableOpacity style={styles.buttonContainer}
// onPress={onButtonPress}
onPress={onLogin}
onPress={() => {
console.log({ username, password })
onLogin(username, password)
}}
>
<Text style={styles.buttonText}>LOGIN</Text>
</TouchableOpacity>
......@@ -38,7 +50,7 @@ const LoginForm = ({onLogin}) => {
)
}
export const LoginScreen = ({onLogin}) => {
export const LoginScreen = ({ onLogin }) => {
return (
......@@ -48,7 +60,7 @@ export const LoginScreen = ({onLogin}) => {
</View>
<View style={styles.formContainer}>
<LoginForm onLogin={onLogin}/>
<LoginForm onLogin={onLogin} />
</View>
</View>
......
......@@ -1556,6 +1556,13 @@
"@nodelib/fs.scandir" "2.1.5"
fastq "^1.6.0"
"@react-native-async-storage/async-storage@~1.15.0":
version "1.15.17"
resolved "https://registry.yarnpkg.com/@react-native-async-storage/async-storage/-/async-storage-1.15.17.tgz#0dae263a52e476ffce871086f1fef5b8e44708eb"
integrity sha512-NQCFs47aFEch9kya/bqwdpvSdZaVRtzU7YB02L8VrmLSLpKgQH/1VwzFUBPcc1/JI1s3GU4yOLVrEbwxq+Fqcw==
dependencies:
merge-options "^3.0.4"
"@react-native-community/cli-debugger-ui@^5.0.1":
version "5.0.1"
resolved "https://registry.yarnpkg.com/@react-native-community/cli-debugger-ui/-/cli-debugger-ui-5.0.1.tgz#6b1f3367b8e5211e899983065ea2e72c1901d75f"
......@@ -4077,6 +4084,11 @@ is-plain-obj@^1.0.0:
resolved "https://registry.yarnpkg.com/is-plain-obj/-/is-plain-obj-1.1.0.tgz#71a50c8429dfca773c92a390a4a03b39fcd51d3e"
integrity sha1-caUMhCnfync8kqOQpKA7OfzVHT4=
is-plain-obj@^2.1.0:
version "2.1.0"
resolved "https://registry.yarnpkg.com/is-plain-obj/-/is-plain-obj-2.1.0.tgz#45e42e37fccf1f40da8e5f76ee21515840c09287"
integrity sha512-YWnfyRwxL/+SsrWYfOpUtz5b3YD+nyfkHvjbcanzk8zgyO4ASD67uVMRt8k5bM4lLMDnXfriRhOpemw+NfT1eA==
is-plain-object@^2.0.3, is-plain-object@^2.0.4:
version "2.0.4"
resolved "https://registry.yarnpkg.com/is-plain-object/-/is-plain-object-2.0.4.tgz#2c163b3fafb1b606d9d17928f05c2a1c38e07677"
......@@ -5032,6 +5044,13 @@ md5-file@^3.2.3:
dependencies:
buffer-alloc "^1.1.0"
merge-options@^3.0.4:
version "3.0.4"
resolved "https://registry.yarnpkg.com/merge-options/-/merge-options-3.0.4.tgz#84709c2aa2a4b24c1981f66c179fe5565cc6dbb7"
integrity sha512-2Sug1+knBjkaMsMgf1ctR1Ujx+Ayku4EdJN4Z+C2+JzoeF7A3OZ9KM2GY0CpQS51NR61LTurMJrRKPhSs3ZRTQ==
dependencies:
is-plain-obj "^2.1.0"
merge-stream@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/merge-stream/-/merge-stream-2.0.0.tgz#52823629a14dd00c9770fb6ad47dc6310f2c1f60"
......
import pickle
from keras.models import load_model
# import pickle
# from keras.models import load_model
import numpy as np
# import numpy as np
import IPython.display as ipd
# import IPython.display as ipd
import random
# import random
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
# from sklearn.model_selection import train_test_split
# from sklearn.preprocessing import LabelEncoder
def predict(samples):
model=load_model(r'./best_model_final.hdf5')
# def predict(samples):
# model=load_model(r'./best_model_final.hdf5')
f1 = open('all_label.txt', 'rb')
all_label = pickle.load(f1)
print('loaded labels')
# f1 = open('all_label.txt', 'rb')
# all_label = pickle.load(f1)
# print('loaded labels')
# f2 = open('all_waves_file.txt', 'rb')
# all_wave = pickle.load(f2)
# print('loaded waves')
# # f2 = open('all_waves_file.txt', 'rb')
# # all_wave = pickle.load(f2)
# # print('loaded waves')
le = LabelEncoder()
y = le.fit_transform(all_label)
classes = list(le.classes_)
# le = LabelEncoder()
# y = le.fit_transform(all_label)
# classes = list(le.classes_)
# train_data_file = open("train_data_file.txt", 'rb')
# [x_tr, x_val, y_tr, y_val] = np.load(train_data_file, allow_pickle=True)
# train_data_file.close()
# # train_data_file = open("train_data_file.txt", 'rb')
# # [x_tr, x_val, y_tr, y_val] = np.load(train_data_file, allow_pickle=True)
# # train_data_file.close()
def predictSamples(audio):
prob=model.predict(audio.reshape(1,8000,1))
index=np.argmax(prob[0])
return classes[index]
# def predictSamples(audio):
# prob=model.predict(audio.reshape(1,8000,1))
# index=np.argmax(prob[0])
# return classes[index]
# index=random.randint(0,len(x_val)-1)
# samples=x_val[index].ravel()
print(samples)
# print("Audio:",classes[np.argmax(y_val[index])])
ipd.Audio(samples, rate=8000)
# # index=random.randint(0,len(x_val)-1)
# # samples=x_val[index].ravel()
# print(samples)
# # print("Audio:",classes[np.argmax(y_val[index])])
# ipd.Audio(samples, rate=8000)
result = predictSamples(samples)
# result = predictSamples(samples)
print("Text:",result)
# print("Text:",result)
return result
\ No newline at end of file
# return result
\ No newline at end of file
import pickle
from matplotlib import pyplot
import os
import librosa
import IPython.display as ipd
import matplotlib.pyplot as plt
import numpy as np
from scipy.io import wavfile
import warnings
# import pickle
# from matplotlib import pyplot
# import os
# import librosa
# import IPython.display as ipd
# import matplotlib.pyplot as plt
# import numpy as np
# from scipy.io import wavfile
# import warnings
from sklearn.preprocessing import LabelEncoder
# from sklearn.preprocessing import LabelEncoder
from keras.utils import np_utils
# from keras.utils import np_utils
from sklearn.model_selection import train_test_split
from keras.layers import Dense, Dropout, Flatten, Conv1D, Input, MaxPooling1D
from keras.models import Model
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras import backend as K
K.clear_session()
warnings.filterwarnings("ignore")
# os.listdir('../../../data/')
classes = ['down', 'go', 'left', 'no', 'off',
'on', 'right', 'stop', 'up', 'yes']
def train():
print('1')
train_audio_path = r'./backend/data/train/train/audio/'
samples, sample_rate = librosa.load(
train_audio_path+'yes/0a7c2a8d_nohash_0.wav', sr=16000)
# fig = plt.figure(figsize=(14, 8))
# ax1 = fig.add_subplot(211)
# ax1.set_title('Raw wave of ' + r'../input/train/audio/yes/0a7c2a8d_nohash_0.wav')
# ax1.set_xlabel('time')
# ax1.set_ylabel('Amplitude')
# ax1.plot(np.linspace(0, sample_rate/len(samples), sample_rate), samples)
ipd.Audio(samples, rate=sample_rate)
# from sklearn.model_selection import train_test_split
# from keras.layers import Dense, Dropout, Flatten, Conv1D, Input, MaxPooling1D
# from keras.models import Model
# from keras.callbacks import EarlyStopping, ModelCheckpoint
# from keras import backend as K
# K.clear_session()
# warnings.filterwarnings("ignore")
# # os.listdir('../../../data/')
# classes = ['down', 'go', 'left', 'no', 'off',
# 'on', 'right', 'stop', 'up', 'yes']
# def train():
# print('1')
# train_audio_path = r'./backend/data/train/train/audio/'
# samples, sample_rate = librosa.load(
# train_audio_path+'yes/0a7c2a8d_nohash_0.wav', sr=16000)
# # fig = plt.figure(figsize=(14, 8))
# # ax1 = fig.add_subplot(211)
# # ax1.set_title('Raw wave of ' + r'../input/train/audio/yes/0a7c2a8d_nohash_0.wav')
# # ax1.set_xlabel('time')
# # ax1.set_ylabel('Amplitude')
# # ax1.plot(np.linspace(0, sample_rate/len(samples), sample_rate), samples)
# ipd.Audio(samples, rate=sample_rate)
print(sample_rate)
# print(sample_rate)
samples = librosa.resample(samples, sample_rate, 8000)
ipd.Audio(samples, rate=8000)
# samples = librosa.resample(samples, sample_rate, 8000)
# ipd.Audio(samples, rate=8000)
labels = os.listdir(train_audio_path)
# labels = os.listdir(train_audio_path)
# find count of each label and plot bar graph
no_of_recordings = []
for label in labels:
waves = [f for f in os.listdir(
train_audio_path + '/' + label) if f.endswith('.wav')]
no_of_recordings.append(len(waves))
# # find count of each label and plot bar graph
# no_of_recordings = []
# for label in labels:
# waves = [f for f in os.listdir(
# train_audio_path + '/' + label) if f.endswith('.wav')]
# no_of_recordings.append(len(waves))
# plot
# plt.figure(figsize=(30,5))
index = np.arange(len(labels))
# plt.bar(index, no_of_recordings)
# plt.xlabel('Commands', fontsize=12)
# plt.ylabel('No of recordings', fontsize=12)
# plt.xticks(index, labels, fontsize=15, rotation=60)
# plt.title('No. of recordings for each command')
# plt.show()
# # plot
# # plt.figure(figsize=(30,5))
# index = np.arange(len(labels))
# # plt.bar(index, no_of_recordings)
# # plt.xlabel('Commands', fontsize=12)
# # plt.ylabel('No of recordings', fontsize=12)
# # plt.xticks(index, labels, fontsize=15, rotation=60)
# # plt.title('No. of recordings for each command')
# # plt.show()
print('2')
# print('2')
labels = ["yes", "no", "up", "down", "left",
"right", "on", "off", "stop", "go"]
# labels = ["yes", "no", "up", "down", "left",
# "right", "on", "off", "stop", "go"]
# labels_file = open('./labels_file.bin', 'wb+')
# pickle.dump(obj=labels, file=labels_file)
# labels_file.close()
# # labels_file = open('./labels_file.bin', 'wb+')
# # pickle.dump(obj=labels, file=labels_file)
# # labels_file.close()
# # file = open('./labels_file.bin', 'rb')
# # dict = pickle.load(file)
# # print('loaded')
# # print(dict)
# # print('fdnasf')
# # # file = open('./labels_file.bin', 'rb')
# # # dict = pickle.load(file)
# # # print('loaded')
# # # print(dict)
# # # print('fdnasf')
duration_of_recordings = []
for label in labels:
print('2.1', label)
waves = [f for f in os.listdir(
train_audio_path + '/' + label) if f.endswith('.wav')]
for wav in waves:
sample_rate, samples = wavfile.read(
train_audio_path + '/' + label + '/' + wav)
duration_of_recordings.append(float(len(samples)/sample_rate))
# duration_of_recordings = []
# for label in labels:
# print('2.1', label)
# waves = [f for f in os.listdir(
# train_audio_path + '/' + label) if f.endswith('.wav')]
# for wav in waves:
# sample_rate, samples = wavfile.read(
# train_audio_path + '/' + label + '/' + wav)
# duration_of_recordings.append(float(len(samples)/sample_rate))
plt.hist(np.array(duration_of_recordings))
# plt.hist(np.array(duration_of_recordings))
train_audio_path = r'./backend/data/train/train/audio/'
# train_audio_path = r'./backend/data/train/train/audio/'
all_wave = []
all_label = []
# all_wave = []
# all_label = []
f1 = open('all_label.txt', 'rb')
all_label = pickle.load(f1)
# f1 = open('all_label.txt', 'rb')
# all_label = pickle.load(f1)
f2 = open('all_waves_file.txt', 'rb')
all_wave = pickle.load(f2)
# f2 = open('all_waves_file.txt', 'rb')
# all_wave = pickle.load(f2)
if(all_wave and all_label):
print('loaded labels and waves')
else:
print('Creating labels and waves files')
for label in labels:
print(label)
waves = [f for f in os.listdir(
train_audio_path + '/' + label) if f.endswith('.wav')]
for wav in waves:
samples, sample_rate = librosa.load(
train_audio_path + '/' + label + '/' + wav, sr=16000)
samples = librosa.resample(samples, sample_rate, 8000)
if(len(samples) == 8000):
all_wave.append(samples)
all_label.append(label)
# if(all_wave and all_label):
# print('loaded labels and waves')
# else:
# print('Creating labels and waves files')
# for label in labels:
# print(label)
# waves = [f for f in os.listdir(
# train_audio_path + '/' + label) if f.endswith('.wav')]
# for wav in waves:
# samples, sample_rate = librosa.load(
# train_audio_path + '/' + label + '/' + wav, sr=16000)
# samples = librosa.resample(samples, sample_rate, 8000)
# if(len(samples) == 8000):
# all_wave.append(samples)
# all_label.append(label)
# print('3')
# # print('3')
all_labels_file = open('all_label.txt', 'wb+')
pickle.dump(file=all_labels_file, obj=all_label)
all_labels_file.close()
# all_labels_file = open('all_label.txt', 'wb+')
# pickle.dump(file=all_labels_file, obj=all_label)
# all_labels_file.close()
return False
# return False
all_waves_file = open('all_waves_file.txt', 'wb+')
pickle.dump(file=all_waves_file, obj=all_wave)
all_waves_file.close()
# all_waves_file = open('all_waves_file.txt', 'wb+')
# pickle.dump(file=all_waves_file, obj=all_wave)
# all_waves_file.close()
print('Done: creating labels and waves files')
# print('Done: creating labels and waves files')
return False
le = LabelEncoder()
y = le.fit_transform(all_label)
classes = list(le.classes_)
# return False
# le = LabelEncoder()
# y = le.fit_transform(all_label)
# classes = list(le.classes_)
print('4')
# print('4')
y = np_utils.to_categorical(y, num_classes=len(labels))
# y = np_utils.to_categorical(y, num_classes=len(labels))
all_wave = np.array(all_wave).reshape(-1, 8000, 1)
# all_wave = np.array(all_wave).reshape(-1, 8000, 1)
x_tr, x_val, y_tr, y_val = train_test_split(np.array(all_wave), np.array(
y), stratify=y, test_size=0.2, random_state=777, shuffle=True)
# x_tr, x_val, y_tr, y_val = train_test_split(np.array(all_wave), np.array(
# y), stratify=y, test_size=0.2, random_state=777, shuffle=True)
train_data_file = open('train_data_file.txt', 'wb+')
np.save(file=train_data_file, arr=np.array([x_tr, x_val, y_tr, y_val]))
train_data_file.close()
# train_data_file = open('train_data_file.txt', 'wb+')
# np.save(file=train_data_file, arr=np.array([x_tr, x_val, y_tr, y_val]))
# train_data_file.close()
inputs = Input(shape=(8000, 1))
# inputs = Input(shape=(8000, 1))
# First Conv1D layer
conv = Conv1D(8, 13, padding='valid', activation='relu', strides=1)(inputs)
conv = MaxPooling1D(3)(conv)
conv = Dropout(0.3)(conv)
# # First Conv1D layer
# conv = Conv1D(8, 13, padding='valid', activation='relu', strides=1)(inputs)
# conv = MaxPooling1D(3)(conv)
# conv = Dropout(0.3)(conv)
# Second Conv1D layer
conv = Conv1D(16, 11, padding='valid', activation='relu', strides=1)(conv)
conv = MaxPooling1D(3)(conv)
conv = Dropout(0.3)(conv)
# # Second Conv1D layer
# conv = Conv1D(16, 11, padding='valid', activation='relu', strides=1)(conv)
# conv = MaxPooling1D(3)(conv)
# conv = Dropout(0.3)(conv)
# Third Conv1D layer
conv = Conv1D(32, 9, padding='valid', activation='relu', strides=1)(conv)
conv = MaxPooling1D(3)(conv)
conv = Dropout(0.3)(conv)
# # Third Conv1D layer
# conv = Conv1D(32, 9, padding='valid', activation='relu', strides=1)(conv)
# conv = MaxPooling1D(3)(conv)
# conv = Dropout(0.3)(conv)
# Fourth Conv1D layer
conv = Conv1D(64, 7, padding='valid', activation='relu', strides=1)(conv)
conv = MaxPooling1D(3)(conv)
conv = Dropout(0.3)(conv)
# # Fourth Conv1D layer
# conv = Conv1D(64, 7, padding='valid', activation='relu', strides=1)(conv)
# conv = MaxPooling1D(3)(conv)
# conv = Dropout(0.3)(conv)
# Flatten layer
conv = Flatten()(conv)
# # Flatten layer
# conv = Flatten()(conv)
# Dense Layer 1
conv = Dense(256, activation='relu')(conv)
conv = Dropout(0.3)(conv)
# # Dense Layer 1
# conv = Dense(256, activation='relu')(conv)
# conv = Dropout(0.3)(conv)
# Dense Layer 2
conv = Dense(128, activation='relu')(conv)
conv = Dropout(0.3)(conv)
# # Dense Layer 2
# conv = Dense(128, activation='relu')(conv)
# conv = Dropout(0.3)(conv)
outputs = Dense(len(labels), activation='softmax')(conv)
# outputs = Dense(len(labels), activation='softmax')(conv)
model = Model(inputs, outputs)
model.summary()
# model = Model(inputs, outputs)
# model.summary()
model.compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['accuracy'])
# model.compile(loss='categorical_crossentropy',
# optimizer='adam', metrics=['accuracy'])
es = EarlyStopping(monitor='val_loss', mode='min',
verbose=1, patience=10, min_delta=0.0001)
mc = ModelCheckpoint('best_model.hdf5', monitor='val_accuracy',
verbose=1, save_best_only=True, mode='max')
# es = EarlyStopping(monitor='val_loss', mode='min',
# verbose=1, patience=10, min_delta=0.0001)
# mc = ModelCheckpoint('best_model.hdf5', monitor='val_accuracy',
# verbose=1, save_best_only=True, mode='max')
history = model.fit(x_tr, y_tr, epochs=100, callbacks=[
es, mc], batch_size=32, validation_data=(x_val, y_val))
# history = model.fit(x_tr, y_tr, epochs=100, callbacks=[
# es, mc], batch_size=32, validation_data=(x_val, y_val))
# pyplot.plot(history.history['loss'], label='train')
# pyplot.plot(history.history['val_loss'], label='test')
# pyplot.legend()
# # pyplot.plot(history.history['loss'], label='train')
# # pyplot.plot(history.history['val_loss'], label='test')
# # pyplot.legend()
# pyplot.show()
# # pyplot.show()
return history
# return history
from argparse import ONE_OR_MORE
from operator import truediv
from sqlite3 import Timestamp
from django.db import models
from django.contrib.auth.models import User
# Create your models here.
class MlModel(models.Model):
id = models.AutoField(primary_key=True)
description = models.TextField(blank=True)
timestamp = models.DateTimeField(blank=True, auto_now=True)
details = models.JSONField()
class Conversation(models.Model):
id = models.AutoField(primary_key=True)
from_user = models.ForeignKey(
User, related_name='from_chat', on_delete=models.PROTECT)
to_user = models.ForeignKey(
User, related_name='to_chat', on_delete=models.PROTECT)
timestamp = models.DateTimeField(auto_now=True)
class Chat(models.Model):
id = models.AutoField(primary_key=True)
conversation = models.ForeignKey(Conversation, on_delete=models.PROTECT)
from_user = models.ForeignKey(
User, related_name='from_convo', on_delete=models.PROTECT)
to_user = models.ForeignKey(
User, related_name='to_convo', on_delete=models.PROTECT)
message = models.TextField()
timestamp = models.DateTimeField(auto_now=True)
from django.contrib.auth.models import User, Group
from .models import MlModel
from .models import Chat, Conversation, MlModel
from rest_framework import serializers
from rest_framework_simplejwt.serializers import TokenObtainPairSerializer
from django.forms.models import model_to_dict
class MyTokenObtainPairSerializer(TokenObtainPairSerializer):
@classmethod
def get_token(cls, user):
token = super(MyTokenObtainPairSerializer, cls).get_token(user)
# Add custom claims
return token
def validate(self, attrs):
data = super().validate(attrs)
refresh = self.get_token(self.user)
data['refresh'] = str(refresh)
data['access'] = str(refresh.access_token)
# Add extra responses here
user = self.user
print(user.id)
user_obj = User.objects.filter(id=user.id).values('username', 'email', 'id').first()
print(user_obj)
data['user'] = user_obj
return data
class UserSerializer(serializers.HyperlinkedModelSerializer):
class Meta:
......@@ -20,3 +45,17 @@ class MlModelSerializer(serializers.ModelSerializer):
fields = (
'__all__'
)
class ChatSerialier(serializers.ModelSerializer):
class Meta:
model = Chat
fields = (
'__all__'
)
class ConversationSerializer(serializers.Serializer):
class Meta:
model = Conversation
fields = (
'__all__'
)
\ No newline at end of file
......@@ -2,7 +2,8 @@ from http.client import HTTPResponse
from django.contrib.auth.models import User, Group
from rest_framework import viewsets
from rest_framework import permissions
from backend.cms.serializers import MlModelSerializer
from backend.cms.serializers import MyTokenObtainPairSerializer
from backend.cms.serializers import MlModelSerializer, ChatSerialier, ConversationSerializer
from backend.cms.serializers import UserSerializer, GroupSerializer
from rest_framework.decorators import action
from rest_framework.response import Response
......@@ -16,16 +17,23 @@ import librosa
from django.core.files.storage import FileSystemStorage
from .models import MlModel
from .models import Chat, Conversation, MlModel
from rest_framework_simplejwt.views import TokenObtainPairView
from .model.train import train
# from .model.train import train
from .model.predict import predict
# from .model.predict import predict
from pydub import AudioSegment
import numpy as np
class ObtainTokenPairWithUserView(TokenObtainPairView):
permission_classes = (permissions.AllowAny,)
serializer_class = MyTokenObtainPairSerializer
class UserViewSet(viewsets.ModelViewSet):
"""
API endpoint that allows users to be viewed or edited.
......@@ -39,7 +47,7 @@ class UserViewSet(viewsets.ModelViewSet):
print('Function ran')
results = train()
results = {} # train() CHANGE HERE
print(results)
return Response({'success': True})
......@@ -130,10 +138,17 @@ class MlModelViewSet(viewsets.ViewSet):
results = predict(samples)
results = {} #predict(samples) CHANGE HERE
print(results)
return Response({'success': True, 'result': results})
class ChatViewSet(viewsets.ViewSet):
queryset = Chat.objects.all().order_by('-timestamp')
serializer_class = ChatSerialier
permission_classes = [permissions.IsAuthenticated]
class ConversationViewSet(viewsets.ViewSet):
queryset = Conversation.objects.all
serializer_class = ConversationSerializer
permission_classes = [permissions.IsAuthenticated]
\ No newline at end of file
......@@ -40,7 +40,8 @@ INSTALLED_APPS = [
'django.contrib.messages',
'django.contrib.staticfiles',
'rest_framework',
'backend.cms'
'backend.cms',
'corsheaders',
]
MIDDLEWARE = [
......@@ -51,6 +52,7 @@ MIDDLEWARE = [
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
'corsheaders.middleware.CorsMiddleware',
]
ROOT_URLCONF = 'backend.urls'
......@@ -156,3 +158,5 @@ SIMPLE_JWT = {
'SLIDING_TOKEN_LIFETIME': datetime.timedelta(minutes=5),
'SLIDING_TOKEN_REFRESH_LIFETIME': datetime.timedelta(days=1),
}
CORS_ORIGIN_ALLOW_ALL = True
\ No newline at end of file
from django.urls import include, path, re_path
from rest_framework import routers
from backend.cms.views import ObtainTokenPairWithUserView
from backend.cms import views
from rest_framework_simplejwt.views import TokenObtainPairView, TokenRefreshView
from rest_framework.authtoken.views import obtain_auth_token
router = routers.DefaultRouter()
router.register(r'users', views.UserViewSet)
......@@ -13,6 +15,10 @@ router.register(r'mlmodels', views.MlModelViewSet)
urlpatterns = [
path('', include(router.urls)),
path('api-auth/', include('rest_framework.urls', namespace='rest_framework')),
re_path(r'^api/auth/token/obtain/$', TokenObtainPairView.as_view()),
re_path(r'^api/auth/token/refresh/$', TokenRefreshView.as_view())
re_path(r'^api/auth/token/obtain/$', ObtainTokenPairWithUserView.as_view()),
re_path(r'^api/auth/token/refresh/$', TokenRefreshView.as_view()),
# url(r'^auth/login/$',
# obtain_auth_token,
# name='auth_user_login'),
]
\ No newline at end of file
No preview for this file type
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment