Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
2
240
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
U.D.C.S.WIJESOORIYA
240
Commits
af144043
Commit
af144043
authored
Oct 07, 2022
by
Malsha Rathnasiri
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
format files
parent
6beb123f
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
179 additions
and
256 deletions
+179
-256
backend/backend/cms/model/predict.py
backend/backend/cms/model/predict.py
+27
-39
backend/backend/cms/model/train.py
backend/backend/cms/model/train.py
+142
-164
backend/backend/cms/views.py
backend/backend/cms/views.py
+10
-53
No files found.
backend/backend/cms/model/predict.py
View file @
af144043
#
import pickle
#
from keras.models import load_model
import
pickle
from
keras.models
import
load_model
import
numpy
as
np
# import numpy as np
import
IPython.display
as
ipd
import
random
# import IPython.display as ipd
from
sklearn.model_selection
import
train_test_split
from
sklearn.preprocessing
import
LabelEncoder
# import random
def
predict
(
samples
):
#load the trained model
model
=
load_model
(
r'./best_model_final.hdf5'
)
# from sklearn.model_selection import train_test_split
# from sklearn.preprocessing import LabelEncoder
#load labels
f1
=
open
(
'all_label.txt'
,
'rb'
)
all_label
=
pickle
.
load
(
f1
)
print
(
'loaded labels'
)
#preprocess recorded audio
le
=
LabelEncoder
()
y
=
le
.
fit_transform
(
all_label
)
classes
=
list
(
le
.
classes_
)
# def predict(samples):
# model=load_model(r'./best_model_final.hdf5')
def
predictSamples
(
audio
):
prob
=
model
.
predict
(
audio
.
reshape
(
1
,
8000
,
1
))
index
=
np
.
argmax
(
prob
[
0
])
return
classes
[
index
]
# f1 = open('all_label.txt', 'rb')
# all_label = pickle.load(f1)
# print('loaded labels')
ipd
.
Audio
(
samples
,
rate
=
8000
)
# # f2 = open('all_waves_file.txt', 'rb')
# # all_wave = pickle.load(f2)
# # print('loaded waves')
#run the prediction
result
=
predictSamples
(
samples
)
# le = LabelEncoder()
# y = le.fit_transform(all_label)
# classes = list(le.classes_)
print
(
"Text:"
,
result
)
# # train_data_file = open("train_data_file.txt", 'rb')
# # [x_tr, x_val, y_tr, y_val] = np.load(train_data_file, allow_pickle=True)
# # train_data_file.close()
# def predictSamples(audio):
# prob=model.predict(audio.reshape(1,8000,1))
# index=np.argmax(prob[0])
# return classes[index]
# # index=random.randint(0,len(x_val)-1)
# # samples=x_val[index].ravel()
# print(samples)
# # print("Audio:",classes[np.argmax(y_val[index])])
# ipd.Audio(samples, rate=8000)
# result = predictSamples(samples)
# print("Text:",result)
# return result
\ No newline at end of file
return
result
\ No newline at end of file
backend/backend/cms/model/train.py
View file @
af144043
#
import pickle
#
from matplotlib import pyplot
#
import os
#
import librosa
#
import IPython.display as ipd
#
import matplotlib.pyplot as plt
#
import numpy as np
#
from scipy.io import wavfile
#
import warnings
import
pickle
from
matplotlib
import
pyplot
import
os
import
librosa
import
IPython.display
as
ipd
import
matplotlib.pyplot
as
plt
import
numpy
as
np
from
scipy.io
import
wavfile
import
warnings
# from sklearn.preprocessing import LabelEncoder
from
sklearn.preprocessing
import
LabelEncoder
from
keras.utils
import
np_utils
# from keras.utils import np_utils
from
sklearn.model_selection
import
train_test_split
# from sklearn.model_selection import train_test_split
# from keras.layers import Dense, Dropout, Flatten, Conv1D, Input, MaxPooling1D
# from keras.models import Model
# from keras.callbacks import EarlyStopping, ModelCheckpoint
# from keras import backend as K
# K.clear_session()
# warnings.filterwarnings("ignore")
# # os.listdir('../../../data/')
# classes = ['down', 'go', 'left', 'no', 'off',
# 'on', 'right', 'stop', 'up', 'yes']
# def train():
# print('1')
# train_audio_path = r'./backend/data/train/train/audio/'
# samples, sample_rate = librosa.load(
# train_audio_path+'yes/0a7c2a8d_nohash_0.wav', sr=16000)
# # fig = plt.figure(figsize=(14, 8))
# # ax1 = fig.add_subplot(211)
# # ax1.set_title('Raw wave of ' + r'../input/train/audio/yes/0a7c2a8d_nohash_0.wav')
# # ax1.set_xlabel('time')
# # ax1.set_ylabel('Amplitude')
# # ax1.plot(np.linspace(0, sample_rate/len(samples), sample_rate), samples)
from
keras.layers
import
Dense
,
Dropout
,
Flatten
,
Conv1D
,
Input
,
MaxPooling1D
from
keras.models
import
Model
from
keras.callbacks
import
EarlyStopping
,
ModelCheckpoint
from
keras
import
backend
as
K
K
.
clear_session
()
# ipd.Audio(samples, rate=sample_rate)
# print(sample_rate
)
warnings
.
filterwarnings
(
"ignore"
)
# samples = librosa.resample(samples, sample_rate, 8000)
# ipd.Audio(samples, rate=8000)
# os.listdir('../../../data/')
# labels = os.listdir(train_audio_path)
# list of words to detect
classes
=
[
'down'
,
'go'
,
'left'
,
'no'
,
'off'
,
'on'
,
'right'
,
'stop'
,
'up'
,
'yes'
]
# # find count of each label and plot bar graph
# no_of_recordings = []
# for label in labels:
# waves = [f for f in os.listdir(
# train_audio_path + '/' + label) if f.endswith('.wav')]
# no_of_recordings.append(len(waves))
# # plot
# # plt.figure(figsize=(30,5))
# index = np.arange(len(labels))
# # plt.bar(index, no_of_recordings)
# # plt.xlabel('Commands', fontsize=12)
# # plt.ylabel('No of recordings', fontsize=12)
# # plt.xticks(index, labels, fontsize=15, rotation=60)
# # plt.title('No. of recordings for each command')
# # plt.show()
def
train
():
# print('2')
#data preprocessing
train_audio_path
=
r'./backend/data/train/train/audio/'
samples
,
sample_rate
=
librosa
.
load
(
train_audio_path
+
'yes/0a7c2a8d_nohash_0.wav'
,
sr
=
16000
)
# fig = plt.figure(figsize=(14, 8))
# ax1 = fig.add_subplot(211)
# ax1.set_title('Raw wave of ' + r'../input/train/audio/yes/0a7c2a8d_nohash_0.wav')
# ax1.set_xlabel('time')
# ax1.set_ylabel('Amplitude')
# ax1.plot(np.linspace(0, sample_rate/len(samples), sample_rate), samples)
# labels = ["yes", "no", "up", "down", "left",
# "right", "on", "off", "stop", "go"]
ipd
.
Audio
(
samples
,
rate
=
sample_rate
)
# # labels_file = open('./labels_file.bin', 'wb+')
# # pickle.dump(obj=labels, file=labels_file)
# # labels_file.close()
print
(
sample_rate
)
# # # file = open('./labels_file.bin', 'rb')
# # # dict = pickle.load(file)
# # # print('loaded')
# # # print(dict)
# # # print('fdnasf')
samples
=
librosa
.
resample
(
samples
,
sample_rate
,
8000
)
ipd
.
Audio
(
samples
,
rate
=
8000
)
# duration_of_recordings = []
# for label in labels:
# print('2.1', label)
# waves = [f for f in os.listdir(
# train_audio_path + '/' + label) if f.endswith('.wav')]
# for wav in waves:
# sample_rate, samples = wavfile.read(
# train_audio_path + '/' + label + '/' + wav)
# duration_of_recordings.append(float(len(samples)/sample_rate))
labels
=
os
.
listdir
(
train_audio_path
)
# plt.hist(np.array(duration_of_recordings))
no_of_recordings
=
[]
for
label
in
labels
:
waves
=
[
f
for
f
in
os
.
listdir
(
train_audio_path
+
'/'
+
label
)
if
f
.
endswith
(
'.wav'
)]
no_of_recordings
.
append
(
len
(
waves
))
# train_audio_path = r'./backend/data/train/train/audio/'
index
=
np
.
arange
(
len
(
labels
))
# all_wave = []
# all_label = [
]
labels
=
[
"yes"
,
"no"
,
"up"
,
"down"
,
"left"
,
"right"
,
"on"
,
"off"
,
"stop"
,
"go"
]
# f1 = open('all_label.txt', 'rb')
# all_label = pickle.load(f1)
duration_of_recordings
=
[]
for
label
in
labels
:
print
(
'2.1'
,
label
)
waves
=
[
f
for
f
in
os
.
listdir
(
train_audio_path
+
'/'
+
label
)
if
f
.
endswith
(
'.wav'
)]
for
wav
in
waves
:
sample_rate
,
samples
=
wavfile
.
read
(
train_audio_path
+
'/'
+
label
+
'/'
+
wav
)
duration_of_recordings
.
append
(
float
(
len
(
samples
)
/
sample_rate
))
# f2 = open('all_waves_file.txt', 'rb')
# all_wave = pickle.load(f2)
plt
.
hist
(
np
.
array
(
duration_of_recordings
))
# if(all_wave and all_label):
# print('loaded labels and waves')
# else:
# print('Creating labels and waves files')
# for label in labels:
# print(label)
# waves = [f for f in os.listdir(
# train_audio_path + '/' + label) if f.endswith('.wav')]
# for wav in waves:
# samples, sample_rate = librosa.load(
# train_audio_path + '/' + label + '/' + wav, sr=16000)
# samples = librosa.resample(samples, sample_rate, 8000)
# if(len(samples) == 8000):
# all_wave.append(samples)
# all_label.append(label)
train_audio_path
=
r'./backend/data/train/train/audio/'
# # print('3')
all_wave
=
[]
all_label
=
[]
# all_labels_file = open('all_label.txt', 'wb+')
# pickle.dump(file=all_labels_file, obj=all_label
)
# all_labels_file.close(
)
#If labels are already generated load them
f1
=
open
(
'all_label.txt'
,
'rb'
)
all_label
=
pickle
.
load
(
f1
)
f2
=
open
(
'all_waves_file.txt'
,
'rb'
)
all_wave
=
pickle
.
load
(
f2
)
# all_waves_file = open('all_waves_file.txt', 'wb+')
# pickle.dump(file=all_waves_file, obj=all_wave)
# all_waves_file.close()
if
(
all_wave
and
all_label
):
print
(
'loaded labels and waves'
)
else
:
print
(
'Creating labels and waves files'
)
for
label
in
labels
:
print
(
label
)
waves
=
[
f
for
f
in
os
.
listdir
(
train_audio_path
+
'/'
+
label
)
if
f
.
endswith
(
'.wav'
)]
for
wav
in
waves
:
samples
,
sample_rate
=
librosa
.
load
(
train_audio_path
+
'/'
+
label
+
'/'
+
wav
,
sr
=
16000
)
samples
=
librosa
.
resample
(
samples
,
sample_rate
,
8000
)
if
(
len
(
samples
)
==
8000
):
all_wave
.
append
(
samples
)
all_label
.
append
(
label
)
# print('Done: creating labels and waves files')
all_labels_file
=
open
(
'all_label.txt'
,
'wb+'
)
pickle
.
dump
(
file
=
all_labels_file
,
obj
=
all_label
)
all_labels_file
.
close
()
all_waves_file
=
open
(
'all_waves_file.txt'
,
'wb+'
)
pickle
.
dump
(
file
=
all_waves_file
,
obj
=
all_wave
)
all_waves_file
.
close
()
# le = LabelEncoder()
# y = le.fit_transform(all_label)
# classes = list(le.classes_)
print
(
'Done: creating labels and waves files'
)
# print('4')
le
=
LabelEncoder
()
y
=
le
.
fit_transform
(
all_label
)
classes
=
list
(
le
.
classes_
)
#
y = np_utils.to_categorical(y, num_classes=len(labels))
y
=
np_utils
.
to_categorical
(
y
,
num_classes
=
len
(
labels
))
#
all_wave = np.array(all_wave).reshape(-1, 8000, 1)
all_wave
=
np
.
array
(
all_wave
)
.
reshape
(
-
1
,
8000
,
1
)
#
x_tr, x_val, y_tr, y_val = train_test_split(np.array(all_wave), np.array(
#
y), stratify=y, test_size=0.2, random_state=777, shuffle=True)
x_tr
,
x_val
,
y_tr
,
y_val
=
train_test_split
(
np
.
array
(
all_wave
),
np
.
array
(
y
),
stratify
=
y
,
test_size
=
0.2
,
random_state
=
777
,
shuffle
=
True
)
#
train_data_file = open('train_data_file.txt', 'wb+')
#
np.save(file=train_data_file, arr=np.array([x_tr, x_val, y_tr, y_val]))
#
train_data_file.close()
train_data_file
=
open
(
'train_data_file.txt'
,
'wb+'
)
np
.
save
(
file
=
train_data_file
,
arr
=
np
.
array
([
x_tr
,
x_val
,
y_tr
,
y_val
]))
train_data_file
.
close
()
#
inputs = Input(shape=(8000, 1))
inputs
=
Input
(
shape
=
(
8000
,
1
))
#
# First Conv1D layer
#
conv = Conv1D(8, 13, padding='valid', activation='relu', strides=1)(inputs)
#
conv = MaxPooling1D(3)(conv)
#
conv = Dropout(0.3)(conv)
# First Conv1D layer
conv
=
Conv1D
(
8
,
13
,
padding
=
'valid'
,
activation
=
'relu'
,
strides
=
1
)(
inputs
)
conv
=
MaxPooling1D
(
3
)(
conv
)
conv
=
Dropout
(
0.3
)(
conv
)
#
# Second Conv1D layer
#
conv = Conv1D(16, 11, padding='valid', activation='relu', strides=1)(conv)
#
conv = MaxPooling1D(3)(conv)
#
conv = Dropout(0.3)(conv)
# Second Conv1D layer
conv
=
Conv1D
(
16
,
11
,
padding
=
'valid'
,
activation
=
'relu'
,
strides
=
1
)(
conv
)
conv
=
MaxPooling1D
(
3
)(
conv
)
conv
=
Dropout
(
0.3
)(
conv
)
#
# Third Conv1D layer
#
conv = Conv1D(32, 9, padding='valid', activation='relu', strides=1)(conv)
#
conv = MaxPooling1D(3)(conv)
#
conv = Dropout(0.3)(conv)
# Third Conv1D layer
conv
=
Conv1D
(
32
,
9
,
padding
=
'valid'
,
activation
=
'relu'
,
strides
=
1
)(
conv
)
conv
=
MaxPooling1D
(
3
)(
conv
)
conv
=
Dropout
(
0.3
)(
conv
)
#
# Fourth Conv1D layer
#
conv = Conv1D(64, 7, padding='valid', activation='relu', strides=1)(conv)
#
conv = MaxPooling1D(3)(conv)
#
conv = Dropout(0.3)(conv)
# Fourth Conv1D layer
conv
=
Conv1D
(
64
,
7
,
padding
=
'valid'
,
activation
=
'relu'
,
strides
=
1
)(
conv
)
conv
=
MaxPooling1D
(
3
)(
conv
)
conv
=
Dropout
(
0.3
)(
conv
)
#
# Flatten layer
#
conv = Flatten()(conv)
# Flatten layer
conv
=
Flatten
()(
conv
)
#
# Dense Layer 1
#
conv = Dense(256, activation='relu')(conv)
#
conv = Dropout(0.3)(conv)
# Dense Layer 1
conv
=
Dense
(
256
,
activation
=
'relu'
)(
conv
)
conv
=
Dropout
(
0.3
)(
conv
)
#
# Dense Layer 2
#
conv = Dense(128, activation='relu')(conv)
#
conv = Dropout(0.3)(conv)
# Dense Layer 2
conv
=
Dense
(
128
,
activation
=
'relu'
)(
conv
)
conv
=
Dropout
(
0.3
)(
conv
)
#
outputs = Dense(len(labels), activation='softmax')(conv)
outputs
=
Dense
(
len
(
labels
),
activation
=
'softmax'
)(
conv
)
# model = Model(inputs, outputs)
# model.summary()
# initializing the model
model
=
Model
(
inputs
,
outputs
)
model
.
summary
()
#
model.compile(loss='categorical_crossentropy',
#
optimizer='adam', metrics=['accuracy'])
model
.
compile
(
loss
=
'categorical_crossentropy'
,
optimizer
=
'adam'
,
metrics
=
[
'accuracy'
])
#
es = EarlyStopping(monitor='val_loss', mode='min',
#
verbose=1, patience=10, min_delta=0.0001)
#
mc = ModelCheckpoint('best_model.hdf5', monitor='val_accuracy',
#
verbose=1, save_best_only=True, mode='max')
es
=
EarlyStopping
(
monitor
=
'val_loss'
,
mode
=
'min'
,
verbose
=
1
,
patience
=
10
,
min_delta
=
0.0001
)
mc
=
ModelCheckpoint
(
'best_model.hdf5'
,
monitor
=
'val_accuracy'
,
verbose
=
1
,
save_best_only
=
True
,
mode
=
'max'
)
# history = model.fit(x_tr, y_tr, epochs=100, callbacks=[
# es, mc], batch_size=32, validation_data=(x_val, y_val))
#training the model
history
=
model
.
fit
(
x_tr
,
y_tr
,
epochs
=
100
,
callbacks
=
[
es
,
mc
],
batch_size
=
32
,
validation_data
=
(
x_val
,
y_val
))
# # pyplot.plot(history.history['loss'], label='train')
# # pyplot.plot(history.history['val_loss'], label='test')
# # pyplot.legend()
# code to plot the graphs
# pyplot.plot(history.history['loss'], label='train')
# pyplot.plot(history.history['val_loss'], label='test')
# pyplot.legend()
#
# pyplot.show()
# pyplot.show()
#
return history
return
history
backend/backend/cms/views.py
View file @
af144043
...
...
@@ -16,26 +16,23 @@ import librosa
from
django.db.models
import
Q
from
django.core.files.storage
import
FileSystemStorage
from
.models
import
Chat
,
Conversation
,
MlModel
from
rest_framework_simplejwt.views
import
TokenObtainPairView
# from .model.train import train
# from .model.predict import predict
from
.model.train
import
train
from
.model.predict
import
predict
from
pydub
import
AudioSegment
import
numpy
as
np
#Custom Viewset to get auth token
class
ObtainTokenPairWithUserView
(
TokenObtainPairView
):
permission_classes
=
(
permissions
.
AllowAny
,)
serializer_class
=
MyTokenObtainPairSerializer
class
UserViewSet
(
viewsets
.
ModelViewSet
):
"""
API endpoint that allows users to be viewed or edited.
...
...
@@ -70,9 +67,9 @@ class MlModelViewSet(viewsets.ViewSet):
permission_classes
=
[
permissions
.
AllowAny
]
parser_classes
=
[
MultiPartParser
]
#Custom api to add sample chats
@
action
(
detail
=
False
)
def
addChats
(
*
args
,
**
kwargs
):
admin
=
User
.
objects
.
get
(
username
=
'admin'
)
user2
=
User
.
objects
.
get
(
username
=
'user2'
)
...
...
@@ -106,6 +103,7 @@ class MlModelViewSet(viewsets.ViewSet):
conversation
=
convo
,
from_user_id
=
chat
[
'from'
],
to_user_id
=
chat
[
'to'
],
messsage
=
chat
[
'message'
])
object
.
save
()
#Custom api to train the model
@
action
(
detail
=
False
)
def
train
(
*
args
,
**
kwargs
):
print
(
'Function ran'
)
...
...
@@ -113,6 +111,7 @@ class MlModelViewSet(viewsets.ViewSet):
print
(
results
)
return
Response
({
'success'
:
True
})
#Custom api to convert audio to text
@
action
(
detail
=
False
,
methods
=
[
"POST"
])
def
detect
(
self
,
request
,
*
args
,
**
kwargs
):
print
(
'Function ran'
)
...
...
@@ -135,7 +134,7 @@ class MlModelViewSet(viewsets.ViewSet):
print
(
'---------------------------------------------------------'
)
if
(
samples
.
shape
[
0
]
>
8000
):
print
(
'grate
e
r -------------------------------------'
)
print
(
'grater -------------------------------------'
)
samples
=
samples
[
-
8000
:]
print
(
samples
.
shape
)
else
:
...
...
@@ -144,57 +143,17 @@ class MlModelViewSet(viewsets.ViewSet):
samples
=
np
.
concatenate
((
samples
,
new_arr
))
print
(
samples
.
shape
)
# audio_file = request.data
# # Using File storage to save file for future converting
# fs = FileSystemStorage()
# file_name = fs.save(audio_file.name, audio_file)
# audio_file_url = fs.url(file_name)
# # Preparing paths for convertion
# upstream = os.path.dirname(os.path.dirname(os.path.dirname(
# os.path.abspath(__file__))))
# path = os.path.join(upstream, 'media', audio_file.name)
# mp3_filename = '.'.join([audio_file.name.split('.')[0], 'mp3'])
# new_path = os.path.join(
# upstream, 'media', mp3_filename)
# # Converting to mp3 here
# wma_version = AudioSegment.from_file(path, "wav")
# wma_version.export(new_path, format="mp3")
# user_id = self.request.user.id
# # I was trying to create a Track instance, the mp3 get's saved but it is not being saved using location specified in models.
# track = Track.objects.create(user_id=user_id)
# track.file.name = mp3_filename
# track.save()
results
=
{}
# predict(samples)
results
=
predict
(
samples
)
print
(
results
)
return
Response
({
'success'
:
True
,
'result'
:
results
})
class
ChatViewSet
(
viewsets
.
ModelViewSet
):
queryset
=
Chat
.
objects
.
all
()
.
order_by
(
'-timestamp'
)
serializer_class
=
ChatSerializer
permission_classes
=
[
permissions
.
IsAuthenticated
]
#change to permissions.isAutheniticated
@
action
(
methods
=
'POST'
,
detail
=
True
)
def
getChats
(
self
,
request
,
*
args
,
**
kwargs
):
#conversation_id hardcoded as we dont have many conversations at the moment
chats
=
Chat
.
objects
\
.
filter
(
conversation_id
=
1
)
\
.
filter
(
(
Q
(
from_user__user_id
=
request
.
user
.
id
)
|
Q
(
to_user__user_id
=
request
.
user
.
id
))
)
.
order_by
(
'-timestamp'
)
.
values
()
return
Response
({
chats
})
permission_classes
=
[
permissions
.
IsAuthenticated
]
#ovveride defualt list action to get chats of specific user conversation
def
list
(
self
,
request
,
pk
=
None
):
if
pk
==
None
:
chats
=
Chat
.
objects
\
.
filter
(
conversation_id
=
1
)
\
...
...
@@ -210,7 +169,6 @@ class ChatViewSet(viewsets.ModelViewSet):
serializer
=
self
.
get_serializer
(
page
,
many
=
True
)
result_set
=
serializer
.
data
return
Response
(
result_set
)
def
get_result_set
(
self
,
chats
):
...
...
@@ -218,7 +176,6 @@ class ChatViewSet(viewsets.ModelViewSet):
return
result_set
class
ConversationViewSet
(
viewsets
.
ModelViewSet
):
queryset
=
Conversation
.
objects
.
all
()
.
order_by
(
'id'
)
serializer_class
=
ConversationSerializer
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment