Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
2
2023-297
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Weththasinghe A.S
2023-297
Commits
a60c7856
Commit
a60c7856
authored
Dec 04, 2023
by
Deshan N.A.S
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Compleat PP1
parent
8ef9efe1
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
491 additions
and
0 deletions
+491
-0
IT20154530-PP1/Component4 (1).ipynb
IT20154530-PP1/Component4 (1).ipynb
+390
-0
IT20154530-PP1/c4Data.csv
IT20154530-PP1/c4Data.csv
+101
-0
No files found.
IT20154530-PP1/Component4 (1).ipynb
0 → 100644
View file @
a60c7856
{
"nbformat"
:
4
,
"nbformat_minor"
:
0
,
"metadata"
:
{
"colab"
:
{
"provenance"
:
[]
},
"kernelspec"
:
{
"name"
:
"python3"
,
"display_name"
:
"Python 3"
},
"language_info"
:
{
"name"
:
"python"
}
},
"cells"
:
[
{
"cell_type"
:
"code"
,
"source"
:
[
"import pandas as pd
\n
"
,
"from sklearn.preprocessing import StandardScaler, OneHotEncoder
\n
"
,
"from sklearn.compose import ColumnTransformer
\n
"
,
"from sklearn.model_selection import train_test_split
\n
"
,
"from sklearn.linear_model import LogisticRegression
\n
"
,
"from sklearn.pipeline import Pipeline
\n
"
,
"
\n
"
,
"# Load your data
\n
"
,
"df = pd.read_csv(
\"
/content/c4Data.csv
\"
)
\n
"
],
"metadata"
:
{
"id"
:
"ESL2GKosDtJQ"
},
"execution_count"
:
16
,
"outputs"
:
[]
},
{
"cell_type"
:
"code"
,
"source"
:
[
"df.head()"
],
"metadata"
:
{
"colab"
:
{
"base_uri"
:
"https://localhost:8080/"
,
"height"
:
302
},
"id"
:
"0tdLcppxDv0C"
,
"outputId"
:
"c9b5b050-1f92-4bda-df8b-fc661779d165"
},
"execution_count"
:
17
,
"outputs"
:
[
{
"output_type"
:
"execute_result"
,
"data"
:
{
"text/plain"
:
[
" Age Gender BMI Current Protein Intake (g)
\\\n
"
,
"0 73 M 19.946739 65
\n
"
,
"1 74 F 18.849295 50
\n
"
,
"2 54 F 30.723429 45
\n
"
,
"3 59 M 19.123082 53
\n
"
,
"4 76 F 23.106224 59
\n
"
,
"
\n
"
,
" Current Sodium Intake (mg) Current Potassium Intake (mg)
\\\n
"
,
"0 1663 3529
\n
"
,
"1 1920 3668
\n
"
,
"2 2013 3213
\n
"
,
"3 2377 3470
\n
"
,
"4 2280 3616
\n
"
,
"
\n
"
,
" Current Phosphorus Intake (mg) Other Conditions GFR Proteinuria
\\\n
"
,
"0 936 None 38 2
\n
"
,
"1 1028 Hypertension 26 2
\n
"
,
"2 1268 Diabetes 30 1
\n
"
,
"3 900 Heart Disease 29 1
\n
"
,
"4 953 Diabetes 46 2
\n
"
,
"
\n
"
,
" Preferred Food Level
\n
"
,
"0 Low Potassium 1
\n
"
,
"1 Balanced 2
\n
"
,
"2 Low Sodium 3
\n
"
,
"3 Low Phosphorus 1
\n
"
,
"4 Low Phosphorus 3 "
],
"text/html"
:
[
"
\n
"
,
" <div id=
\"
df-e59467c3-c0a1-40d6-ad07-a712ddbf8e81
\"
>
\n
"
,
" <div class=
\"
colab-df-container
\"
>
\n
"
,
" <div>
\n
"
,
"<style scoped>
\n
"
,
" .dataframe tbody tr th:only-of-type {\n"
,
" vertical-align: middle;
\n
"
,
" }
\n
"
,
"
\n
"
,
" .dataframe tbody tr th {\n"
,
" vertical-align: top;
\n
"
,
" }
\n
"
,
"
\n
"
,
" .dataframe thead th {\n"
,
" text-align: right;
\n
"
,
" }
\n
"
,
"</style>
\n
"
,
"<table border=
\"
1
\"
class=
\"
dataframe
\"
>
\n
"
,
" <thead>
\n
"
,
" <tr style=
\"
text-align: right;
\"
>
\n
"
,
" <th></th>
\n
"
,
" <th>Age</th>
\n
"
,
" <th>Gender</th>
\n
"
,
" <th>BMI</th>
\n
"
,
" <th>Current Protein Intake (g)</th>
\n
"
,
" <th>Current Sodium Intake (mg)</th>
\n
"
,
" <th>Current Potassium Intake (mg)</th>
\n
"
,
" <th>Current Phosphorus Intake (mg)</th>
\n
"
,
" <th>Other Conditions</th>
\n
"
,
" <th>GFR</th>
\n
"
,
" <th>Proteinuria</th>
\n
"
,
" <th>Preferred Food</th>
\n
"
,
" <th>Level</th>
\n
"
,
" </tr>
\n
"
,
" </thead>
\n
"
,
" <tbody>
\n
"
,
" <tr>
\n
"
,
" <th>0</th>
\n
"
,
" <td>73</td>
\n
"
,
" <td>M</td>
\n
"
,
" <td>19.946739</td>
\n
"
,
" <td>65</td>
\n
"
,
" <td>1663</td>
\n
"
,
" <td>3529</td>
\n
"
,
" <td>936</td>
\n
"
,
" <td>None</td>
\n
"
,
" <td>38</td>
\n
"
,
" <td>2</td>
\n
"
,
" <td>Low Potassium</td>
\n
"
,
" <td>1</td>
\n
"
,
" </tr>
\n
"
,
" <tr>
\n
"
,
" <th>1</th>
\n
"
,
" <td>74</td>
\n
"
,
" <td>F</td>
\n
"
,
" <td>18.849295</td>
\n
"
,
" <td>50</td>
\n
"
,
" <td>1920</td>
\n
"
,
" <td>3668</td>
\n
"
,
" <td>1028</td>
\n
"
,
" <td>Hypertension</td>
\n
"
,
" <td>26</td>
\n
"
,
" <td>2</td>
\n
"
,
" <td>Balanced</td>
\n
"
,
" <td>2</td>
\n
"
,
" </tr>
\n
"
,
" <tr>
\n
"
,
" <th>2</th>
\n
"
,
" <td>54</td>
\n
"
,
" <td>F</td>
\n
"
,
" <td>30.723429</td>
\n
"
,
" <td>45</td>
\n
"
,
" <td>2013</td>
\n
"
,
" <td>3213</td>
\n
"
,
" <td>1268</td>
\n
"
,
" <td>Diabetes</td>
\n
"
,
" <td>30</td>
\n
"
,
" <td>1</td>
\n
"
,
" <td>Low Sodium</td>
\n
"
,
" <td>3</td>
\n
"
,
" </tr>
\n
"
,
" <tr>
\n
"
,
" <th>3</th>
\n
"
,
" <td>59</td>
\n
"
,
" <td>M</td>
\n
"
,
" <td>19.123082</td>
\n
"
,
" <td>53</td>
\n
"
,
" <td>2377</td>
\n
"
,
" <td>3470</td>
\n
"
,
" <td>900</td>
\n
"
,
" <td>Heart Disease</td>
\n
"
,
" <td>29</td>
\n
"
,
" <td>1</td>
\n
"
,
" <td>Low Phosphorus</td>
\n
"
,
" <td>1</td>
\n
"
,
" </tr>
\n
"
,
" <tr>
\n
"
,
" <th>4</th>
\n
"
,
" <td>76</td>
\n
"
,
" <td>F</td>
\n
"
,
" <td>23.106224</td>
\n
"
,
" <td>59</td>
\n
"
,
" <td>2280</td>
\n
"
,
" <td>3616</td>
\n
"
,
" <td>953</td>
\n
"
,
" <td>Diabetes</td>
\n
"
,
" <td>46</td>
\n
"
,
" <td>2</td>
\n
"
,
" <td>Low Phosphorus</td>
\n
"
,
" <td>3</td>
\n
"
,
" </tr>
\n
"
,
" </tbody>
\n
"
,
"</table>
\n
"
,
"</div>
\n
"
,
" <button class=
\"
colab-df-convert
\"
onclick=
\"
convertToInteractive('df-e59467c3-c0a1-40d6-ad07-a712ddbf8e81')
\"\n
"
,
" title=
\"
Convert this dataframe to an interactive table.
\"\n
"
,
" style=
\"
display:none;
\"
>
\n
"
,
"
\n
"
,
" <svg xmlns=
\"
http://www.w3.org/2000/svg
\"
height=
\"
24px
\"
viewBox=
\"
0 0 24 24
\"\n
"
,
" width=
\"
24px
\"
>
\n
"
,
" <path d=
\"
M0 0h24v24H0V0z
\"
fill=
\"
none
\"
/>
\n
"
,
" <path d=
\"
M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z
\"
/><path d=
\"
M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z
\"
/>
\n
"
,
" </svg>
\n
"
,
" </button>
\n
"
,
"
\n
"
,
" <style>
\n
"
,
" .colab-df-container {\n"
,
" display:flex;
\n
"
,
" flex-wrap:wrap;
\n
"
,
" gap: 12px;
\n
"
,
" }
\n
"
,
"
\n
"
,
" .colab-df-convert {\n"
,
" background-color: #E8F0FE;
\n
"
,
" border: none;
\n
"
,
" border-radius: 50%;
\n
"
,
" cursor: pointer;
\n
"
,
" display: none;
\n
"
,
" fill: #1967D2;
\n
"
,
" height: 32px;
\n
"
,
" padding: 0 0 0 0;
\n
"
,
" width: 32px;
\n
"
,
" }
\n
"
,
"
\n
"
,
" .colab-df-convert:hover {\n"
,
" background-color: #E2EBFA;
\n
"
,
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);
\n
"
,
" fill: #174EA6;
\n
"
,
" }
\n
"
,
"
\n
"
,
" [theme=dark] .colab-df-convert {\n"
,
" background-color: #3B4455;
\n
"
,
" fill: #D2E3FC;
\n
"
,
" }
\n
"
,
"
\n
"
,
" [theme=dark] .colab-df-convert:hover {\n"
,
" background-color: #434B5C;
\n
"
,
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);
\n
"
,
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));
\n
"
,
" fill: #FFFFFF;
\n
"
,
" }
\n
"
,
" </style>
\n
"
,
"
\n
"
,
" <script>
\n
"
,
" const buttonEl =
\n
"
,
" document.querySelector('#df-e59467c3-c0a1-40d6-ad07-a712ddbf8e81 button.colab-df-convert');
\n
"
,
" buttonEl.style.display =
\n
"
,
" google.colab.kernel.accessAllowed ? 'block' : 'none';
\n
"
,
"
\n
"
,
" async function convertToInteractive(key) {\n"
,
" const element = document.querySelector('#df-e59467c3-c0a1-40d6-ad07-a712ddbf8e81');
\n
"
,
" const dataTable =
\n
"
,
" await google.colab.kernel.invokeFunction('convertToInteractive',
\n
"
,
" [key], {});
\n
"
,
" if (!dataTable) return;
\n
"
,
"
\n
"
,
" const docLinkHtml = 'Like what you see? Visit the ' +
\n
"
,
" '<a target=
\"
_blank
\"
href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'
\n
"
,
" + ' to learn more about interactive tables.';
\n
"
,
" element.innerHTML = '';
\n
"
,
" dataTable['output_type'] = 'display_data';
\n
"
,
" await google.colab.output.renderOutput(dataTable, element);
\n
"
,
" const docLink = document.createElement('div');
\n
"
,
" docLink.innerHTML = docLinkHtml;
\n
"
,
" element.appendChild(docLink);
\n
"
,
" }
\n
"
,
" </script>
\n
"
,
" </div>
\n
"
,
" </div>
\n
"
,
" "
]
},
"metadata"
:
{},
"execution_count"
:
17
}
]
},
{
"cell_type"
:
"code"
,
"source"
:
[
"# Separate features and target variable
\n
"
,
"X = df.drop('Level', axis=1)
\n
"
,
"y = df['Level']
\n
"
,
"
\n
"
,
"# Preprocessing
\n
"
,
"numeric_features = ['Age', 'BMI', 'Current Protein Intake (g)', 'Current Sodium Intake (mg)',
\n
"
,
" 'Current Potassium Intake (mg)', 'Current Phosphorus Intake (mg)', 'GFR']
\n
"
,
"categorical_features = ['Gender', 'Other Conditions', 'Proteinuria', 'Preferred Food']
\n
"
,
"
\n
"
,
"preprocessor = ColumnTransformer(
\n
"
,
" transformers=[
\n
"
,
" ('num', StandardScaler(), numeric_features),
\n
"
,
" ('cat', OneHotEncoder(), categorical_features)])
\n
"
,
"
\n
"
,
"# Model
\n
"
,
"model = LogisticRegression()
\n
"
,
"
\n
"
,
"# Combine preprocessing and model in a pipeline
\n
"
,
"clf = Pipeline(steps=[('preprocessor', preprocessor),
\n
"
,
" ('classifier', model)])
\n
"
,
"
\n
"
,
"# Split the data into train and test sets
\n
"
,
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
\n
"
,
"
\n
"
,
"# Train the model
\n
"
,
"clf.fit(X_train, y_train)
\n
"
,
"
\n
"
,
"# Use the model to make predictions
\n
"
,
"predictions = clf.predict(X_test)
\n
"
,
"
\n
"
,
"print(predictions)
\n
"
],
"metadata"
:
{
"colab"
:
{
"base_uri"
:
"https://localhost:8080/"
},
"id"
:
"ioAXbch_AbQb"
,
"outputId"
:
"08983ca0-9d63-4055-b4fa-539728e9b7d3"
},
"execution_count"
:
18
,
"outputs"
:
[
{
"output_type"
:
"stream"
,
"name"
:
"stdout"
,
"text"
:
[
"[3 1 2 2 1 3 1 3 1 3 1 2 2 3 1 1 2 2 1 2]
\n
"
]
}
]
},
{
"cell_type"
:
"code"
,
"source"
:
[
"def recommend_diet(patient_data):
\n
"
,
" # Convert the data to a dataframe and preprocess it
\n
"
,
" patient_df = pd.DataFrame([patient_data])
\n
"
,
"
\n
"
,
" # Predict the kidney disease stage
\n
"
,
" level = clf.predict(patient_df)[0]
\n
"
,
" print(level)
\n
"
,
"
\n
"
,
" if level == 1:
\n
"
,
" return
\"
Maintain a balanced diet. No specific restrictions but ensure a healthy intake of protein, sodium, potassium and phosphorus.
\"\n
"
,
" elif level == 2:
\n
"
,
" return
\"
Start to monitor and limit the intake of protein, sodium, potassium and phosphorus to prevent further kidney damage.
\"\n
"
,
" elif level == 3:
\n
"
,
" return
\"
Follow a diet low in protein, sodium, potassium and phosphorus. Consult a dietitian for a personalized diet plan.
\"\n
"
,
"
\n
"
,
"# Test the function with patient data
\n
"
,
"patient_data = {\n"
,
" 'Age': 60,
\n
"
,
" 'Gender': 'M',
\n
"
,
" 'BMI': 25,
\n
"
,
" 'Current Protein Intake (g)': 60,
\n
"
,
" 'Current Sodium Intake (mg)': 2000,
\n
"
,
" 'Current Potassium Intake (mg)': 3500,
\n
"
,
" 'Current Phosphorus Intake (mg)': 1200,
\n
"
,
" 'Other Conditions': 'Diabetes',
\n
"
,
" 'GFR': 50,
\n
"
,
" 'Proteinuria': 1,
\n
"
,
" 'Preferred Food': 'Low Sodium',
\n
"
,
"}
\n
"
,
"
\n
"
,
"suggesting = recommend_diet(patient_data)
\n
"
,
"print(suggesting)
\n
"
],
"metadata"
:
{
"colab"
:
{
"base_uri"
:
"https://localhost:8080/"
},
"id"
:
"M7yHk1VC8E71"
,
"outputId"
:
"1df457d6-506d-40fb-dd3c-6ebaab56b5f3"
},
"execution_count"
:
19
,
"outputs"
:
[
{
"output_type"
:
"stream"
,
"name"
:
"stdout"
,
"text"
:
[
"3
\n
"
,
"Follow a diet low in protein, sodium, potassium and phosphorus. Consult a dietitian for a personalized diet plan.
\n
"
]
}
]
}
]
}
\ No newline at end of file
IT20154530-PP1/c4Data.csv
0 → 100644
View file @
a60c7856
Age,Gender,BMI,Current Protein Intake (g),Current Sodium Intake (mg),Current Potassium Intake (mg),Current Phosphorus Intake (mg),Other Conditions,GFR,Proteinuria,Preferred Food,Level
73,M,19.946738594006803,65,1663,3529,936,None,38,2,Low Potassium,1
74,F,18.849295084845252,50,1920,3668,1028,Hypertension,26,2,Balanced,2
54,F,30.723428990623162,45,2013,3213,1268,Diabetes,30,1,Low Sodium,3
59,M,19.123082110619897,53,2377,3470,900,Heart Disease,29,1,Low Phosphorus,1
76,F,23.106224221129764,59,2280,3616,953,Diabetes,46,2,Low Phosphorus,3
75,F,32.86961360838057,61,1673,3133,1175,None,17,1,Low Potassium,3
78,M,28.56216528111437,60,1945,3071,1273,None,29,1,Balanced,3
69,F,34.66537391016402,53,1548,3613,1221,Heart Disease,41,2,Low Sodium,2
71,M,19.759002144240537,53,2130,3342,1189,Heart Disease,36,1,Low Potassium,2
46,M,27.851140342169625,54,1789,3116,961,None,60,1,Low Sodium,2
72,F,30.299198608513276,56,1680,3118,1242,Hypertension,49,2,Low Phosphorus,2
40,F,34.19055213437372,61,2091,3501,1093,Diabetes,54,1,High Protein,1
48,M,20.309892977440224,45,2305,3373,1123,None,42,1,Low Potassium,2
72,M,31.719150447080622,63,2058,3414,1189,None,26,1,Low Sodium,1
63,M,29.167901023658857,46,1710,3039,1272,Heart Disease,57,2,High Protein,1
76,F,27.449046942457123,65,2008,3006,1295,Hypertension,55,2,High Protein,3
40,M,30.97086786856528,65,2001,3110,1024,Hypertension,29,2,Low Potassium,2
51,M,27.51079800240438,59,2272,3104,1299,Heart Disease,49,2,High Protein,1
56,M,34.43588604858363,62,1714,3130,1298,Hypertension,30,1,Low Phosphorus,2
52,F,18.780563577603726,60,1897,3632,1222,Diabetes,29,1,Low Sodium,2
50,M,25.34533093182862,54,1961,3165,934,Heart Disease,57,2,Low Phosphorus,1
47,F,24.534799505347088,63,1753,3053,1246,Hypertension,21,2,Low Sodium,1
45,F,34.54118549812746,49,2398,3570,1150,Heart Disease,54,2,Low Sodium,2
67,F,33.487058174659246,51,1927,3419,1129,Hypertension,58,2,High Protein,2
62,M,23.323522405583482,51,1636,3435,1146,Heart Disease,49,2,Balanced,3
73,M,20.965549180198177,64,1752,3520,1206,Hypertension,35,2,Low Potassium,1
69,F,20.09665354423427,52,2125,3004,1006,Hypertension,59,1,Low Sodium,3
62,M,19.23067261469212,63,1930,3140,1174,None,56,2,Balanced,3
44,M,30.167864064028926,51,2034,3076,1030,Hypertension,51,2,Balanced,2
61,F,34.142184127676316,53,1720,3664,1047,None,15,2,Low Sodium,3
64,F,32.012063038019996,64,2138,3632,957,Diabetes,15,1,High Protein,2
48,F,32.70237200276655,62,2121,3187,1032,Hypertension,35,1,Low Potassium,3
45,F,21.72790071904713,61,1754,3670,1156,Diabetes,53,2,Low Potassium,2
76,M,26.477956441707075,54,1508,3332,1247,Heart Disease,58,2,High Protein,2
67,M,28.337412161586634,56,2361,3064,1249,None,19,2,High Protein,2
50,M,28.952915348166528,47,1729,3430,1260,None,28,1,Balanced,3
75,F,29.76458354667856,46,2294,3557,952,Diabetes,45,1,High Protein,2
55,F,20.249280857147433,55,2250,3465,924,Hypertension,50,1,Low Phosphorus,1
55,M,26.85393585039305,65,1508,3560,1123,Diabetes,19,2,Low Phosphorus,1
60,M,23.71783240951293,56,1669,3101,968,None,57,2,High Protein,2
72,F,19.267606818106664,61,2328,3046,968,Diabetes,57,1,High Protein,3
55,M,19.378900737806788,49,1899,3475,922,Hypertension,31,2,Balanced,2
65,F,25.539040630511924,55,1959,3404,1240,Hypertension,41,2,High Protein,1
51,F,33.97185081513596,47,1757,3645,907,Heart Disease,51,1,High Protein,3
44,M,23.59954333480335,55,1990,3245,1146,Heart Disease,48,2,Low Potassium,1
47,F,33.141708270700676,65,2180,3625,970,Diabetes,16,1,Low Sodium,1
79,M,28.440485960154433,55,2267,3526,1109,None,31,2,Low Sodium,1
65,F,19.218088157164363,62,2157,3405,1121,Hypertension,44,2,Low Phosphorus,1
47,M,20.889231185284178,46,2220,3537,945,None,38,1,Low Sodium,3
46,F,33.79131615647411,62,1951,3074,1211,None,27,2,Balanced,2
47,F,23.728281775155672,57,2275,3500,1045,None,35,1,High Protein,2
63,M,22.711230013098966,51,1780,3678,1209,None,41,2,Low Phosphorus,1
62,F,23.069726457737858,60,1562,3323,1026,Heart Disease,43,2,Low Phosphorus,1
62,F,19.56215909696882,59,1722,3508,965,None,30,2,Low Phosphorus,3
44,M,19.262161892310417,61,1666,3677,1242,Heart Disease,23,2,Balanced,3
69,F,33.565028567812085,51,2039,3446,916,Heart Disease,48,2,Balanced,1
68,M,29.067258536558732,64,2277,3398,990,Heart Disease,34,2,High Protein,3
56,M,20.093910609647807,60,2336,3409,1262,Hypertension,54,1,Low Phosphorus,1
58,M,31.039148862906792,48,2369,3522,988,Hypertension,27,1,High Protein,1
49,M,28.56868630699509,52,1650,3687,1141,None,56,2,High Protein,1
51,M,25.81897229211454,57,1962,3693,1220,Heart Disease,50,1,Low Sodium,2
51,F,32.099316439033466,60,1671,3001,957,Diabetes,22,2,Low Phosphorus,3
55,F,27.642174156945075,60,2028,3004,1071,None,33,1,Balanced,2
51,M,34.618710704465585,53,1531,3447,1172,Hypertension,33,1,Balanced,2
62,F,34.74951553399714,48,1982,3497,1089,Diabetes,57,1,Balanced,3
65,F,26.487645392036654,61,2084,3461,1093,Heart Disease,25,1,Low Phosphorus,3
75,M,33.507331899204246,51,1816,3288,1238,Hypertension,15,1,Low Sodium,1
61,F,34.26258230275746,62,2049,3059,952,Heart Disease,16,2,Low Sodium,3
49,F,21.517459080661496,49,2274,3304,1271,None,48,1,Low Sodium,1
50,M,24.51043358428764,65,2230,3308,1253,Heart Disease,29,2,Low Potassium,1
68,F,25.37891994519571,52,2278,3266,1135,Diabetes,20,1,Balanced,1
48,F,33.43451403269776,61,1794,3349,932,Heart Disease,17,1,High Protein,2
49,M,24.083538966036972,48,1774,3015,953,Hypertension,19,2,Low Sodium,2
41,M,21.64837901605087,50,1682,3133,915,Diabetes,40,1,High Protein,3
71,F,29.864586820882764,65,2203,3227,1244,None,56,1,Low Sodium,3
80,M,20.115662318102103,64,1584,3276,1173,Hypertension,48,1,Low Potassium,3
50,F,30.51296987600044,55,1957,3250,1119,Diabetes,15,2,Low Sodium,1
50,F,25.760111105875822,52,2097,3221,936,Diabetes,36,1,Low Potassium,2
53,M,31.93473117285959,65,1815,3463,954,Hypertension,53,2,Balanced,3
72,F,30.356885094933524,52,2056,3274,1265,Hypertension,38,1,Balanced,1
67,F,19.5808247547552,60,2081,3349,1241,Heart Disease,47,2,Balanced,2
61,M,23.32876429838346,58,2042,3004,938,Diabetes,59,1,Low Phosphorus,3
43,F,22.94998773094898,49,1636,3321,964,None,49,1,Low Sodium,3
79,F,31.414732384113776,59,2346,3054,989,Hypertension,40,1,Low Phosphorus,2
42,F,30.319641498778196,50,2244,3145,901,None,57,1,Balanced,1
66,M,20.14260825964677,58,1527,3050,1114,Diabetes,34,2,High Protein,2
53,F,20.79479305116346,57,1543,3096,1084,Heart Disease,57,1,Low Phosphorus,3
73,M,30.348057927507533,55,1969,3593,913,Hypertension,35,1,Low Sodium,1
47,F,29.052469759127746,56,2189,3010,1161,None,22,2,Low Potassium,1
70,M,19.803148291345618,57,1714,3586,962,Hypertension,39,2,Balanced,2
46,M,27.838260711096098,46,2026,3439,1129,Hypertension,15,2,Low Sodium,3
41,F,31.715011543157758,56,2334,3558,1080,None,27,2,Balanced,1
59,M,25.612389672826044,51,2387,3610,1276,Hypertension,41,1,Low Phosphorus,3
47,M,30.664290348600712,53,1565,3332,968,None,17,2,Low Sodium,1
68,M,20.4700103000671,53,2115,3254,1149,Heart Disease,31,1,Low Sodium,2
74,F,21.857767752479983,50,2208,3162,994,Heart Disease,54,1,High Protein,3
78,M,23.407578872788292,54,1655,3041,1287,Diabetes,56,2,Low Sodium,3
44,F,31.311648187454786,57,2276,3399,961,Hypertension,45,1,Low Phosphorus,2
72,F,25.539987775722587,54,1927,3110,905,Diabetes,37,1,Low Potassium,2
58,F,27.107305005680168,50,2331,3257,948,Heart Disease,23,2,Low Sodium,1
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment