Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
2
21_22-J 31
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
3
Merge Requests
3
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
21_22-J 31
21_22-J 31
Commits
05d4870e
Commit
05d4870e
authored
Apr 30, 2022
by
Ravindu Nethsara
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
New Files Added For demand forecasting
parent
30eb22c8
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
523 additions
and
157 deletions
+523
-157
Data/Purchasefile.csv
Data/Purchasefile.csv
+121
-121
User/forms.py
User/forms.py
+5
-2
User/urls.py
User/urls.py
+2
-0
User/views.py
User/views.py
+393
-32
db.sqlite3
db.sqlite3
+0
-0
templates/Admin/Forecasting.html
templates/Admin/Forecasting.html
+1
-1
templates/Admin/Sidebar2.html
templates/Admin/Sidebar2.html
+1
-1
No files found.
Data/Purchasefile.csv
View file @
05d4870e
Month,CALTEX_Delo_Gold_Ultra,Price1
2012-01,380,4100
2012-02,240,4100
2012-03,324,4100
2012-04,381,4300
2012-05,246,4300
2012-06,336,4350
2012-07,282,4350
2012-08,212,4350
2012-09,222,4350
2012-10,301,4350
2012-11,264,4350
2012-12,388,4350
2013-01,354,4350
2013-02,247,4450
2013-03,221,4450
2013-04,363,4450
2013-05,240,4450
2013-06,312,4450
2013-07,233,4450
2013-08,254,4450
2013-09,198,4600
2013-10,246,4600
2013-11,310,4600
2013-12,421,4600
2014-01,313,4600
2014-02,306,4600
2014-03,247,4600
2014-04,353,4650
2014-05,237,4650
2014-06,386,4650
2014-07,260,4650
2014-08,173,4650
2014-09,328,4650
2014-10,211,4650
2014-11,294,4650
2014-12,444,4400
2015-01,388,4725
2015-02,375,4725
2015-03,218,4725
2015-04,414,4630
2015-05,252,4725
2015-06,369,4725
2015-07,313,4725
2015-08,143,4725
2015-09,349,4725
2015-10,328,4725
2015-11,314,4725
2015-12,451,4700
2016-01,422,4700
2016-02,397,4700
2016-03,354,4700
2016-04,421,4700
2016-05,347,4725
2016-06,453,4725
2016-07,365,4725
2016-08,264,4725
2016-09,302,4725
2016-10,324,4725
2016-11,358,4725
2016-12,512,4725
2017-01,416,4725
2017-02,397,4725
2017-03,410,4725
2017-04,476,4725
2017-05,268,4725
2017-06,477,4725
2017-07,125,4725
2017-08,421,4725
2017-09,322,4725
2017-10,373,4725
2017-11,303,4725
2017-12,567,4725
2018-01,239,4725
2018-02,299,4725
2018-03,340,4725
2018-04,370,4725
2018-05,227,4725
2018-06,386,4725
2018-07,317,4725
2018-08,438,4725
2018-09,321,4725
2018-10,394,4725
2018-11,281,5050
2018-12,436,4900
2019-01,334,4900
2019-02,262,4900
2019-03,286,4900
2019-04,476,4900
2019-05,410,5130
2019-06,474,5130
2019-07,343,5130
2019-08,359,5130
2019-09,251,5130
2019-10,281,5130
2019-11,357,5130
2019-12,570,5130
2020-01,348,5130
2020-02,364,5130
2020-03,477,5130
2020-04,488,5130
2020-05,418,5130
2020-06,512,6100
2020-07,429,6100
2020-08,413,6100
2020-09,377,6100
2020-10,421,6100
2020-11,302,6100
2020-12,488,5090
2021-01,424,5090
2021-02,312,6250
2021-03,383,6250
2021-04,521,6250
2021-05,288,6800
2021-06,341,6800
2021-07,324,7400
2021-08,291,7400
2021-09,330,7400
2021-10,382,7400
2021-11,421,7400
2021-12,516,7200
Month,CALTEX_Delo_Gold_Ultra,Price1
,Substitude_Product_Price1,Production_cost_per_unit1,VIC_Hino_Fuel_Filter,Price2,Substitude_Product_Price2,Production_cost_per_unit2,CALTEX_Texamatic_1888_Transmision_Oil,Price3,Substitude_Product_Price3,Production_cost_per_unit3
2012-01,380,4100
,4150,3500,520,860,910,410,280,780,850,550
2012-02,240,4100
,4150,3500,460,860,910,410,210,780,850,550
2012-03,324,4100
,4150,3500,472,860,910,410,224,780,850,550
2012-04,381,4300
,4320,3800,580,880,910,410,335,785,850,550
2012-05,246,4300
,4320,3800,430,880,910,410,244,785,850,550
2012-06,336,4350
,4320,3800,438,880,910,410,260,785,850,550
2012-07,282,4350
,4320,3800,460,880,910,410,212,785,850,550
2012-08,212,4350
,4320,3800,497,880,910,410,315,785,850,550
2012-09,222,4350
,4320,3800,430,880,910,410,282,785,850,550
2012-10,301,4350
,4320,3800,432,880,910,410,291,785,850,550
2012-11,264,4350
,4320,3800,430,880,910,410,264,825,910,640
2012-12,388,4350
,4320,3800,555,840,910,410,395,825,910,640
2013-01,354,4350
,4320,3800,510,840,910,410,280,825,910,640
2013-02,247,4450
,4555,3950,445,840,910,410,240,825,910,640
2013-03,221,4450
,4550,3950,480,840,910,410,284,825,910,640
2013-04,363,4450
,4550,3950,610,840,910,410,315,825,910,640
2013-05,240,4450
,4550,3950,410,910,940,540,266,825,910,640
2013-06,312,4450
,4550,3950,450,910,940,540,230,825,910,640
2013-07,233,4450
,4550,3950,465,910,940,540,242,940,1150,700
2013-08,254,4450
,4550,3950,488,910,940,540,310,940,1150,700
2013-09,198,4600
,4670,4120,400,910,940,540,322,940,1150,700
2013-10,246,4600
,4670,4120,450,925,990,540,291,940,1150,700
2013-11,310,4600
,4670,4120,438,925,990,540,264,940,1150,700
2013-12,421,4600
,4670,4120,620,900,990,540,395,940,1150,700
2014-01,313,4600
,4670,4120,560,925,990,540,280,940,1150,700
2014-02,306,4600
,4670,4120,480,925,990,540,240,940,1150,700
2014-03,247,4600
,4670,4120,510,925,990,540,284,940,1150,700
2014-04,353,4650
,4710,4200,645,925,990,540,315,980,1300,715
2014-05,237,4650
,4710,4200,470,925,990,540,266,980,1300,715
2014-06,386,4650
,4710,4200,440,925,990,540,230,980,1300,715
2014-07,260,4650
,4710,4200,460,925,990,540,242,980,1300,715
2014-08,173,4650
,4710,4200,530,960,1100,620,310,980,1300,715
2014-09,328,4650
,4710,4200,440,960,1100,620,322,980,1300,715
2014-10,211,4650
,4710,4200,465,960,1100,620,291,980,1300,715
2014-11,294,4650
,4710,4200,530,960,1100,620,264,980,1300,715
2014-12,444,4400
,4450,4200,660,950,1100,620,395,980,1300,715
2015-01,388,4725
,4810,4350,580,960,1100,620,280,980,1300,715
2015-02,375,4725
,4810,4350,510,960,1100,620,240,980,1300,715
2015-03,218,4725
,4810,4350,515,960,1100,620,284,1250,1550,850
2015-04,414,4630
,4600,4350,630,1100,1110,620,315,1250,1550,850
2015-05,252,4725
,4750,4350,485,1100,1110,620,266,1250,1550,850
2015-06,369,4725
,4750,4350,518,1100,1110,620,230,1250,1550,850
2015-07,313,4725
,4750,4350,490,1100,1110,620,242,1250,1550,850
2015-08,143,4725
,4750,4350,540,1100,1110,620,310,1250,1550,850
2015-09,349,4725
,4750,4350,465,1100,1110,620,322,1250,1550,850
2015-10,328,4725
,4750,4350,490,1100,1110,620,291,1250,1550,850
2015-11,314,4725
,4750,4350,470,1100,1110,620,264,1360,1800,980
2015-12,451,4700
,4710,4200,700,1025,1110,620,395,1360,1800,980
2016-01,422,4700
,4710,4200,580,1100,1150,710,280,1360,1800,980
2016-02,397,4700
,4710,4200,510,1100,1150,710,240,1360,1800,980
2016-03,354,4700
,4710,4200,515,1100,1150,710,284,1360,1800,980
2016-04,421,4700
,4710,4200,630,1360,1380,850,315,1360,1800,980
2016-05,347,4725
,4760,4250,485,1360,1380,850,266,1360,1800,980
2016-06,453,4725
,4760,4250,518,1360,1380,850,230,1360,1800,980
2016-07,365,4725
,4760,4250,490,1360,1380,850,242,1360,1800,980
2016-08,264,4725
,4760,4250,540,1360,1380,850,310,1360,1800,980
2016-09,302,4725
,4760,4250,465,1360,1380,850,322,1360,1800,980
2016-10,324,4725
,4760,4250,490,1360,1380,850,291,1410,1800,1200
2016-11,358,4725
,4760,4250,470,1360,1380,850,264,1410,1870,1200
2016-12,512,4725
,4760,4250,700,1320,1380,850,395,1410,1870,1200
2017-01,416,4725
,4760,4250,580,1360,1380,850,280,1410,1870,1200
2017-02,397,4725
,4760,4250,510,1380,1380,850,240,1410,1870,1200
2017-03,410,4725
,4760,4250,515,1380,1380,850,284,1410,1870,1200
2017-04,476,4725
,4760,4250,630,1380,1380,850,315,1410,1870,1200
2017-05,268,4725
,4760,4250,485,1380,1380,850,266,1410,1870,1200
2017-06,477,4725
,4760,4250,518,1380,1380,850,230,1410,1870,1200
2017-07,125,4725
,4760,4250,490,1380,1380,850,242,1410,1870,1200
2017-08,421,4725
,4760,4250,540,1410,1500,980,310,1410,1870,1200
2017-09,322,4725
,4760,4250,465,1410,1500,980,322,1480,2100,1200
2017-10,373,4725
,4760,4250,490,1410,1500,980,291,1480,2100,1200
2017-11,303,4725
,4760,4250,470,1410,1500,980,264,1480,2100,1200
2017-12,567,4725
,4760,4250,700,1400,1500,980,395,1480,2100,1200
2018-01,239,4725
,4760,4250,580,1410,1500,980,280,1480,2100,1200
2018-02,299,4725
,4760,4250,510,1410,1500,980,240,1480,2100,1200
2018-03,340,4725
,4760,4250,515,1410,1500,980,284,1480,2100,1200
2018-04,370,4725
,4760,4320,630,1550,1500,1010,315,1480,2100,1200
2018-05,227,4725
,4760,4320,485,1550,1500,1010,266,1480,2100,1200
2018-06,386,4725
,4760,4320,518,1550,1500,1010,230,1520,2100,1310
2018-07,317,4725
,4760,4320,490,1550,1500,1010,242,1520,2100,1310
2018-08,438,4725
,4760,4320,540,1550,1610,1010,310,1520,2250,1310
2018-09,321,4725
,4760,4320,465,1550,1610,1010,322,1520,2250,1310
2018-10,394,4725
,4760,4320,490,1550,1610,1010,291,1520,2250,1310
2018-11,281,5050
,5110,4350,470,1550,1610,1010,264,1520,2250,1310
2018-12,436,4900
,5000,4350,700,1500,1610,1010,395,1520,2250,1310
2019-01,334,4900
,5000,4350,580,1550,1610,1010,280,1520,2250,1310
2019-02,262,4900
,5000,4350,510,1610,1610,1110,240,1875,2400,1425
2019-03,286,4900
,5000,4350,515,1610,1610,1110,284,1875,2400,1425
2019-04,476,4900
,5000,4350,630,1610,1610,1110,315,1875,2400,1425
2019-05,410,5130
,5190,4480,485,1610,1610,1110,266,1875,2400,1425
2019-06,474,5130
,5190,4480,518,1610,1610,1110,230,1875,2400,1425
2019-07,343,5130
,5190,4480,490,1610,1610,1110,242,1875,2400,1425
2019-08,359,5130
,5190,4480,540,1610,1610,1110,310,1875,2400,1425
2019-09,251,5130
,5190,4480,465,1610,1610,1110,322,1910,2550,1510
2019-10,281,5130
,5190,4480,490,1610,1610,1110,291,1910,2550,1510
2019-11,357,5130
,5190,4480,470,1610,1610,1110,264,1910,2550,1510
2019-12,570,5130
,5190,4480,700,1600,1610,1110,395,1910,2550,1510
2020-01,348,5130
,5190,4480,580,1610,1610,1110,280,1910,2550,1510
2020-02,364,5130
,5190,4480,510,1700,1850,1250,240,1910,2550,1510
2020-03,477,5130
,5190,4480,515,1700,1850,1250,284,1910,2550,1510
2020-04,488,5130
,5190,4480,630,1700,1850,1250,315,1910,2550,1510
2020-05,418,5130
,5190,4480,485,1700,1850,1250,266,1910,2550,1510
2020-06,512,6100
,6150,5600,518,1700,1850,1250,230,1910,2550,1510
2020-07,429,6100
,6150,5600,490,1700,1850,1250,242,1910,2550,1510
2020-08,413,6100
,6150,5600,540,1700,1850,1250,310,1910,2550,1510
2020-09,377,6100
,6150,5600,465,1700,1850,1250,322,2100,2550,1700
2020-10,421,6100
,6150,5600,490,1850,1850,1300,291,2100,2550,1700
2020-11,302,6100
,6150,5600,470,1850,1850,1300,264,2100,2800,1700
2020-12,488,5090
,4950,5600,700,1850,1850,1300,395,2100,2800,1700
2021-01,424,5090
,4950,5600,580,1850,2100,1300,280,2100,2800,1700
2021-02,312,6250
,6350,5600,510,1850,2100,1300,240,2100,2800,1700
2021-03,383,6250
,6350,5600,515,1850,2100,1300,284,2100,2800,1700
2021-04,521,6250
,6350,5600,630,1850,2100,1300,315,2100,2800,1700
2021-05,288,6800
,6950,5950,485,2100,2100,1540,266,2300,2800,1950
2021-06,341,6800
,6950,5950,518,2100,2100,1540,230,2300,2800,1950
2021-07,324,7400
,7500,6250,490,2100,2100,1540,242,2300,2800,1950
2021-08,291,7400
,7500,6250,540,2100,2100,1540,310,2300,2800,1950
2021-09,330,7400
,7500,6250,465,2100,2100,1540,322,2300,2800,1950
2021-10,382,7400
,7500,6250,490,2100,2100,1540,291,2300,2800,1950
2021-11,421,7400
,7500,6250,470,2100,2100,1540,264,2300,2800,1950
2021-12,516,7200
,7500,6250,700,2170,2100,1540,395,2200,2800,1950
User/forms.py
View file @
05d4870e
...
...
@@ -15,7 +15,9 @@ MODE_CHOICES = [
MODE_DEMAND
=
[
(
''
,
'Select Product'
),
(
'1'
,
'CALTEX Delo Gold Ultra'
)
(
'1'
,
'CALTEX_Delo_Gold_Ultra'
),
(
'2'
,
'VIC_Hino_Fuel_Filter'
),
(
'3'
,
'CALTEX_Texamatic_1888_Transmision_Oil'
)
]
...
...
@@ -74,4 +76,5 @@ class MyFormServices(forms.Form):
Vnumber
=
forms
.
CharField
(
label
=
'Enter Vehicle Number '
)
ServiceType
=
forms
.
IntegerField
(
label
=
"Select Service"
,
widget
=
forms
.
Select
(
choices
=
MODE_SERVICES
))
class
MyFormNew
(
forms
.
Form
):
inputdate
=
forms
.
DateField
(
widget
=
DateInput
)
User/urls.py
View file @
05d4870e
...
...
@@ -15,7 +15,9 @@ urlpatterns = [
path
(
'Employee_Efficiency/'
,
responseapp_views
.
Employee_Efficiency
),
path
(
'PurchaseHistory/'
,
responseapp_views
.
PurchaseHistory
),
path
(
'Forecasting/'
,
responseapp_views
.
Forecasting
),
path
(
'HighestDemand/'
,
responseapp_views
.
HighestDemand
),
path
(
'Result/'
,
responseapp_views
.
Forecasting
),
path
(
'Result2/'
,
responseapp_views
.
HighestDemand
),
path
(
'Customer_Data/'
,
responseapp_views
.
Customer_Data
),
path
(
'Customer_Frequency/'
,
responseapp_views
.
Customer_Frequency
),
path
(
'MaintainData/'
,
responseapp_views
.
MaintainData
),
...
...
User/views.py
View file @
05d4870e
...
...
@@ -4,7 +4,7 @@ from django.template import loader
from
django.http
import
HttpResponse
from
sklearn.tree
import
DecisionTreeClassifier
from
User.forms
import
MyForm
,
MyForm2
,
MyForm3
,
MyForm4
,
MyForm5
,
MyFormServices
from
User.forms
import
MyForm
,
MyForm2
,
MyForm3
,
MyForm4
,
MyForm5
,
MyFormServices
,
MyFormNew
from
django.contrib.auth
import
authenticate
,
login
from
sklearn.linear_model
import
LogisticRegression
from
User
import
models
as
Umodels
...
...
@@ -166,44 +166,61 @@ def PurchaseHistory(request):
# start Demand Forecasting Machine Learning Model
def
Forecasting
(
request
):
if
request
.
method
==
'POST'
:
if
request
.
method
==
'POST'
:
myForm
=
MyForm4
(
request
.
POST
)
if
myForm
.
is_valid
():
Productid
=
myForm
.
cleaned_data
[
'Productid'
]
inputdate
=
myForm
.
cleaned_data
[
'inputdate'
]
ProductName
=
"CALTEX Delo Gold Ultra"
if
(
ProductName
==
"CALTEX Delo Gold Ultra"
):
# load first product budget
if
(
Productid
==
1
):
# load first product budget
df
=
pd
.
read_csv
(
'Data/Purchasefile.csv'
)
df
=
df
.
drop
(
[
'VIC_Hino_Fuel_Filter'
,
'Price2'
,
'Substitude_Product_Price2'
,
'Production_cost_per_unit2'
,
'CALTEX_Texamatic_1888_Transmision_Oil'
,
'Price3'
,
'Substitude_Product_Price3'
,
'Production_cost_per_unit3'
],
axis
=
1
)
df
.
head
()
df
.
columns
=
[
"Month"
,
"CALTEX Delo Gold Ultra"
,
"Price1"
]
## Cleaning up the data
df
.
columns
=
[
"Month"
,
"CALTEX_Delo_Gold_Ultra"
,
"Price1"
,
"Substitude_Product_Price1"
,
"Production_cost_per_unit1"
]
rrr
=
df
.
head
()
## Drop last 2 rows
# df.drop(106, axis=0, inplace=True)
# df.tail()
# df.drop(105, axis=0, inplace=True)
# df.tail()
# Convert Month into Datetime
df
[
'Month'
]
=
pd
.
to_datetime
(
df
[
'Month'
])
# df.head()
df
.
set_index
(
'Month'
,
inplace
=
True
)
# df.head()
df
.
describe
()
# df.plot()
# plt.show()
### Testing For Stationarity
adfuller
(
df
[
'CALTEX Delo Gold Ultra'
])
from
statsmodels.tsa.stattools
import
adfuller
test_result
=
adfuller
(
df
[
'CALTEX_Delo_Gold_Ultra'
])
test_result2
=
adfuller
(
df
[
'Price1'
])
def
adfuller_test
(
Product1
):
result
=
adfuller
(
Product1
)
def
adfuller_test
(
CALTEX_Delo_Gold_Ultra
):
result
=
adfuller
(
CALTEX_Delo_Gold_Ultra
)
labels
=
[
'ADF Test Statistic'
,
'p-value'
,
'#Lags Used'
,
'Number of Observations Used'
]
for
value
,
label
in
zip
(
result
,
labels
):
print
(
label
+
' : '
+
str
(
value
))
def
adfuller_test2
(
Price1
):
result2
=
adfuller
(
Price1
)
adfuller_test
(
df
[
'CALTEX Delo Gold Ultra'
])
labels
=
[
'ADF Test Statistic'
,
'p-value'
,
'#Lags Used'
,
'Number of Observations Used'
]
for
value
,
label
in
zip
(
result2
,
labels
):
print
(
label
+
' : '
+
str
(
value
))
adfuller_test
(
df
[
'CALTEX_Delo_Gold_Ultra'
])
adfuller_test2
(
df
[
'Price1'
])
##Differencing
df
[
'Product1 First Difference'
]
=
df
[
'CALTEX
Delo Gold Ultra'
]
-
df
[
'CALTEX Delo Gold
Ultra'
]
.
shift
(
1
)
df
[
'Product1 First Difference'
]
=
df
[
'CALTEX
_Delo_Gold_Ultra'
]
-
df
[
'CALTEX_Delo_Gold_
Ultra'
]
.
shift
(
1
)
df
[
'Product1 First Difference2'
]
=
df
[
'Price1'
]
-
df
[
'Price1'
]
.
shift
(
1
)
# df['Sales'].shift(1)
df
[
'Seasonal First Difference'
]
=
df
[
'CALTEX
Delo Gold Ultra'
]
-
df
[
'CALTEX Delo Gold
Ultra'
]
.
shift
(
12
)
df
[
'Seasonal First Difference'
]
=
df
[
'CALTEX
_Delo_Gold_Ultra'
]
-
df
[
'CALTEX_Delo_Gold_
Ultra'
]
.
shift
(
12
)
df
[
'Seasonal First Difference2'
]
=
df
[
'Price1'
]
-
df
[
'Price1'
]
.
shift
(
12
)
# df.head(14)
...
...
@@ -211,34 +228,45 @@ def Forecasting(request):
adfuller_test
(
df
[
'Seasonal First Difference'
]
.
dropna
())
adfuller_test2
(
df
[
'Seasonal First Difference2'
]
.
dropna
())
# ARIMA
model
=
ARIMA
(
df
[
'CALTEX Delo Gold Ultra'
],
order
=
(
1
,
0
,
0
))
import
statsmodels.api
as
sm
# For non-seasonal data
# p=1, d=1, q=0 or 1
from
statsmodels.tsa.arima.model
import
ARIMA
model
=
ARIMA
(
df
[
'CALTEX_Delo_Gold_Ultra'
],
order
=
(
1
,
0
,
0
))
model2
=
ARIMA
(
df
[
'Price1'
],
order
=
(
1
,
0
,
0
))
model_fit
=
model
.
fit
()
print
(
model_fit
.
summary
())
model_fit2
=
model2
.
fit
()
print
(
model_fit2
.
summary
())
# model_fit.summary()
df
[
'forecast'
]
=
model_fit
.
predict
(
start
=
104
,
end
=
120
,
dynamic
=
True
)
df
[
'forecastPrice'
]
=
model_fit2
.
predict
(
start
=
104
,
end
=
120
,
dynamic
=
True
)
# df[['Product1','forecast']].plot(figsize=(12,8))
model
=
sm
.
tsa
.
statespace
.
SARIMAX
(
df
[
'CALTEX
Delo Gold
Ultra'
],
order
=
(
1
,
1
,
1
),
model
=
sm
.
tsa
.
statespace
.
SARIMAX
(
df
[
'CALTEX
_Delo_Gold_
Ultra'
],
order
=
(
1
,
1
,
1
),
seasonal_order
=
(
1
,
1
,
1
,
12
))
model2
=
sm
.
tsa
.
statespace
.
SARIMAX
(
df
[
'Price1'
],
order
=
(
1
,
1
,
1
),
seasonal_order
=
(
1
,
1
,
1
,
12
))
results
=
model
.
fit
()
results2
=
model2
.
fit
()
# df['forecast']=results.predict(start=100,end=100,dynamic=True)
# df[['Product1','forecast']].plot(figsize=(12,8))
from
pandas.tseries.offsets
import
DateOffset
future_dates
=
[
df
.
index
[
-
1
]
+
DateOffset
(
months
=
x
)
for
x
in
range
(
0
,
150
)]
future_datest_df
=
pd
.
DataFrame
(
index
=
future_dates
[
1
:],
columns
=
df
.
columns
)
# future_datest_df.tail()
future_df
=
pd
.
concat
([
df
,
future_datest_df
])
# work with date
inputdatex
=
inputdate
inputdate
=
datetime
.
strftime
(
inputdatex
,
"
%
m/
%
d/
%
Y"
)
# work with date
# 10/01/2025
# find Date Space
inputdatex
=
myForm
.
cleaned_data
[
'inputdate'
]
inputdate
=
datetime
.
strftime
(
inputdatex
,
"
%
m/
%
d/
%
Y"
)
lastDate
=
'
10/01/2021
'
lastDate
=
'
07/01/2020
'
inputdate
=
inputdate
date_format
=
"
%
m/
%
d/
%
Y"
...
...
@@ -248,32 +276,365 @@ def Forecasting(request):
delta2
=
delta
.
days
# print(delta2)
forcasting_date
=
int
(
delta2
/
30
)
newDate
=
forcasting_date
+
1
21
# ending number
newDate
=
forcasting_date
+
1
02
# ending number
# print(forcasting_date)
forecast
=
future_df
[
'forecast'
]
=
results
.
predict
(
start
=
1
19
,
end
=
newDate
,
dynamic
=
True
)
forecast
=
future_df
[
'forecast'
]
=
results
.
predict
(
start
=
1
04
,
end
=
newDate
,
dynamic
=
True
)
# future_df[['Sales', 'forecast']].plot(figsize=(12, 8))
forecastPrice
=
future_df
[
'forecastPrice'
]
=
results2
.
predict
(
start
=
1
19
,
end
=
newDate
,
dynamic
=
True
)
forecastPrice
=
future_df
[
'forecastPrice'
]
=
results2
.
predict
(
start
=
1
04
,
end
=
newDate
,
dynamic
=
True
)
# future_df[['Price1', 'forecastPrice']].plot(figsize=(12, 8))
df3
=
forecast
[
-
1
]
df4
=
forecastPrice
[
-
1
]
print
(
int
(
df3
))
print
(
int
(
df4
))
arz
=
int
(
df3
)
arz2
=
int
(
df4
)
arz3
=
arz
*
arz2
context
=
{
'arz'
:
arz
,
'arz2'
:
arz2
,
'arz3'
:
arz3
,
'datagot'
:
inputdate
}
template
=
loader
.
get_template
(
'Admin/Result.html'
)
# returing the template
return
HttpResponse
(
template
.
render
(
context
,
request
))
if
(
Productid
==
2
):
# load 2nd product budget
df
=
pd
.
read_csv
(
'Data/Purchasefile.csv'
)
df
=
df
.
drop
(
[
'CALTEX_Delo_Gold_Ultra'
,
'Price1'
,
'Substitude_Product_Price1'
,
'Production_cost_per_unit1'
,
'CALTEX_Texamatic_1888_Transmision_Oil'
,
'Price3'
,
'Substitude_Product_Price3'
,
'Production_cost_per_unit3'
],
axis
=
1
)
df
.
head
()
df
.
columns
=
[
"Month"
,
"VIC_Hino_Fuel_Filter"
,
"Price2"
,
"Substitude_Product_Price2"
,
"Production_cost_per_unit2"
]
df
[
'Month'
]
=
pd
.
to_datetime
(
df
[
'Month'
])
df
.
set_index
(
'Month'
,
inplace
=
True
)
from
statsmodels.tsa.stattools
import
adfuller
test_result
=
adfuller
(
df
[
'VIC_Hino_Fuel_Filter'
])
test_result2
=
adfuller
(
df
[
'Price2'
])
def
adfuller_test
(
VIC_Hino_Fuel_Filter
):
result
=
adfuller
(
VIC_Hino_Fuel_Filter
)
labels
=
[
'ADF Test Statistic'
,
'p-value'
,
'#Lags Used'
,
'Number of Observations Used'
]
for
value
,
label
in
zip
(
result
,
labels
):
print
(
label
+
' : '
+
str
(
value
))
def
adfuller_test2
(
Price2
):
result2
=
adfuller
(
Price2
)
labels
=
[
'ADF Test Statistic'
,
'p-value'
,
'#Lags Used'
,
'Number of Observations Used'
]
for
value
,
label
in
zip
(
result2
,
labels
):
print
(
label
+
' : '
+
str
(
value
))
adfuller_test
(
df
[
'VIC_Hino_Fuel_Filter'
])
adfuller_test2
(
df
[
'Price2'
])
PredictedDemand
=
int
(
df3
)
PredictedPrice
=
int
(
df4
)
PredictedBudget
=
PredictedDemand
*
PredictedPrice
df
[
'Product1 First Difference'
]
=
df
[
'VIC_Hino_Fuel_Filter'
]
-
df
[
'VIC_Hino_Fuel_Filter'
]
.
shift
(
1
)
df
[
'Product1 First Difference2'
]
=
df
[
'Price2'
]
-
df
[
'Price2'
]
.
shift
(
1
)
df
[
'Seasonal First Difference'
]
=
df
[
'VIC_Hino_Fuel_Filter'
]
-
df
[
'VIC_Hino_Fuel_Filter'
]
.
shift
(
12
)
df
[
'Seasonal First Difference2'
]
=
df
[
'Price2'
]
-
df
[
'Price2'
]
.
shift
(
12
)
context
=
{
'arz'
:
PredictedDemand
,
'arz2'
:
PredictedPrice
,
'arz3'
:
PredictedBudget
,
'datagot'
:
inputdate
}
adfuller_test
(
df
[
'Seasonal First Difference'
]
.
dropna
())
adfuller_test2
(
df
[
'Seasonal First Difference2'
]
.
dropna
())
import
statsmodels.api
as
sm
from
statsmodels.tsa.arima.model
import
ARIMA
model
=
ARIMA
(
df
[
'VIC_Hino_Fuel_Filter'
],
order
=
(
1
,
0
,
0
))
model2
=
ARIMA
(
df
[
'Price2'
],
order
=
(
1
,
0
,
0
))
model_fit
=
model
.
fit
()
model_fit2
=
model2
.
fit
()
df
[
'forecast'
]
=
model_fit
.
predict
(
start
=
104
,
end
=
120
,
dynamic
=
True
)
df
[
'forecastPrice'
]
=
model_fit2
.
predict
(
start
=
104
,
end
=
120
,
dynamic
=
True
)
model
=
sm
.
tsa
.
statespace
.
SARIMAX
(
df
[
'VIC_Hino_Fuel_Filter'
],
order
=
(
1
,
1
,
1
),
seasonal_order
=
(
1
,
1
,
1
,
12
))
model2
=
sm
.
tsa
.
statespace
.
SARIMAX
(
df
[
'Price2'
],
order
=
(
1
,
1
,
1
),
seasonal_order
=
(
1
,
1
,
1
,
12
))
results
=
model
.
fit
()
results2
=
model2
.
fit
()
from
pandas.tseries.offsets
import
DateOffset
future_dates
=
[
df
.
index
[
-
1
]
+
DateOffset
(
months
=
x
)
for
x
in
range
(
0
,
150
)]
future_datest_df
=
pd
.
DataFrame
(
index
=
future_dates
[
1
:],
columns
=
df
.
columns
)
# future_datest_df.tail()
future_df
=
pd
.
concat
([
df
,
future_datest_df
])
inputdatex
=
myForm
.
cleaned_data
[
'inputdate'
]
inputdate
=
datetime
.
strftime
(
inputdatex
,
"
%
m/
%
d/
%
Y"
)
lastDate
=
'07/01/2020'
inputdate
=
inputdate
date_format
=
"
%
m/
%
d/
%
Y"
a
=
datetime
.
strptime
(
lastDate
,
date_format
)
# user input date
b
=
datetime
.
strptime
(
inputdate
,
date_format
)
delta
=
b
-
a
delta2
=
delta
.
days
# print(delta2)
forcasting_date
=
int
(
delta2
/
30
)
newDate
=
forcasting_date
+
102
# ending number
forecast
=
future_df
[
'forecast'
]
=
results
.
predict
(
start
=
104
,
end
=
newDate
,
dynamic
=
True
)
forecastPrice
=
future_df
[
'forecastPrice'
]
=
results2
.
predict
(
start
=
104
,
end
=
newDate
,
dynamic
=
True
)
df3
=
forecast
[
-
1
]
df4
=
forecastPrice
[
-
1
]
print
(
int
(
df3
))
print
(
int
(
df4
))
arz
=
int
(
df3
)
arz2
=
int
(
df4
)
arz3
=
arz
*
arz2
context
=
{
'arz'
:
arz
,
'arz2'
:
arz2
,
'arz3'
:
arz3
,
'datagot'
:
inputdate
}
template
=
loader
.
get_template
(
'Admin/Result.html'
)
return
HttpResponse
(
template
.
render
(
context
,
request
))
else
:
form
=
MyForm4
()
#returning form
return
render
(
request
,
'Admin/Forecasting.html'
,
{
'form'
:
form
});
if
(
Productid
==
3
):
# load 3rd product budget
df
=
pd
.
read_csv
(
'Data/Purchasefile.csv'
)
df
=
df
.
drop
(
[
'CALTEX_Delo_Gold_Ultra'
,
'Price1'
,
'Substitude_Product_Price1'
,
'Production_cost_per_unit1'
,
'VIC_Hino_Fuel_Filter'
,
'Price2'
,
'Substitude_Product_Price2'
,
'Production_cost_per_unit2'
],
axis
=
1
)
df
.
head
()
df
.
columns
=
[
"Month"
,
"CALTEX_Texamatic_1888_Transmision_Oil"
,
"Price3"
,
"Substitude_Product_Price3"
,
"Production_cost_per_unit3"
]
df
[
'Month'
]
=
pd
.
to_datetime
(
df
[
'Month'
])
df
.
set_index
(
'Month'
,
inplace
=
True
)
from
statsmodels.tsa.stattools
import
adfuller
test_result
=
adfuller
(
df
[
'CALTEX_Texamatic_1888_Transmision_Oil'
])
test_result2
=
adfuller
(
df
[
'Price3'
])
def
adfuller_test
(
CALTEX_Texamatic_1888_Transmision_Oil
):
result
=
adfuller
(
CALTEX_Texamatic_1888_Transmision_Oil
)
labels
=
[
'ADF Test Statistic'
,
'p-value'
,
'#Lags Used'
,
'Number of Observations Used'
]
for
value
,
label
in
zip
(
result
,
labels
):
print
(
label
+
' : '
+
str
(
value
))
def
adfuller_test2
(
Price3
):
result2
=
adfuller
(
Price3
)
labels
=
[
'ADF Test Statistic'
,
'p-value'
,
'#Lags Used'
,
'Number of Observations Used'
]
for
value
,
label
in
zip
(
result2
,
labels
):
print
(
label
+
' : '
+
str
(
value
))
adfuller_test
(
df
[
'CALTEX_Texamatic_1888_Transmision_Oil'
])
adfuller_test2
(
df
[
'Price3'
])
df
[
'Product1 First Difference'
]
=
df
[
'CALTEX_Texamatic_1888_Transmision_Oil'
]
-
df
[
'CALTEX_Texamatic_1888_Transmision_Oil'
]
.
shift
(
1
)
df
[
'Product1 First Difference2'
]
=
df
[
'Price3'
]
-
df
[
'Price3'
]
.
shift
(
1
)
df
[
'Seasonal First Difference'
]
=
df
[
'CALTEX_Texamatic_1888_Transmision_Oil'
]
-
df
[
'CALTEX_Texamatic_1888_Transmision_Oil'
]
.
shift
(
12
)
df
[
'Seasonal First Difference2'
]
=
df
[
'Price3'
]
-
df
[
'Price3'
]
.
shift
(
12
)
adfuller_test
(
df
[
'Seasonal First Difference'
]
.
dropna
())
adfuller_test2
(
df
[
'Seasonal First Difference2'
]
.
dropna
())
import
statsmodels.api
as
sm
from
statsmodels.tsa.arima.model
import
ARIMA
model
=
ARIMA
(
df
[
'CALTEX_Texamatic_1888_Transmision_Oil'
],
order
=
(
1
,
0
,
0
))
model2
=
ARIMA
(
df
[
'Price3'
],
order
=
(
1
,
0
,
0
))
model_fit
=
model
.
fit
()
model_fit2
=
model2
.
fit
()
df
[
'forecast'
]
=
model_fit
.
predict
(
start
=
104
,
end
=
120
,
dynamic
=
True
)
df
[
'forecastPrice'
]
=
model_fit2
.
predict
(
start
=
104
,
end
=
120
,
dynamic
=
True
)
model
=
sm
.
tsa
.
statespace
.
SARIMAX
(
df
[
'CALTEX_Texamatic_1888_Transmision_Oil'
],
order
=
(
1
,
1
,
1
),
seasonal_order
=
(
1
,
1
,
1
,
12
))
model2
=
sm
.
tsa
.
statespace
.
SARIMAX
(
df
[
'Price3'
],
order
=
(
1
,
1
,
1
),
seasonal_order
=
(
1
,
1
,
1
,
12
))
results
=
model
.
fit
()
results2
=
model2
.
fit
()
from
pandas.tseries.offsets
import
DateOffset
future_dates
=
[
df
.
index
[
-
1
]
+
DateOffset
(
months
=
x
)
for
x
in
range
(
0
,
150
)]
future_datest_df
=
pd
.
DataFrame
(
index
=
future_dates
[
1
:],
columns
=
df
.
columns
)
# future_datest_df.tail()
future_df
=
pd
.
concat
([
df
,
future_datest_df
])
inputdatex
=
myForm
.
cleaned_data
[
'inputdate'
]
inputdate
=
datetime
.
strftime
(
inputdatex
,
"
%
m/
%
d/
%
Y"
)
lastDate
=
'07/01/2020'
inputdate
=
inputdate
date_format
=
"
%
m/
%
d/
%
Y"
a
=
datetime
.
strptime
(
lastDate
,
date_format
)
# user input date
b
=
datetime
.
strptime
(
inputdate
,
date_format
)
delta
=
b
-
a
delta2
=
delta
.
days
# print(delta2)
forcasting_date
=
int
(
delta2
/
30
)
newDate
=
forcasting_date
+
102
# ending number
forecast
=
future_df
[
'forecast'
]
=
results
.
predict
(
start
=
104
,
end
=
newDate
,
dynamic
=
True
)
forecastPrice
=
future_df
[
'forecastPrice'
]
=
results2
.
predict
(
start
=
104
,
end
=
newDate
,
dynamic
=
True
)
df3
=
forecast
[
-
1
]
df4
=
forecastPrice
[
-
1
]
print
(
int
(
df3
))
print
(
int
(
df4
))
arz
=
int
(
df3
)
arz2
=
int
(
df4
)
arz3
=
arz
*
arz2
context
=
{
'arz'
:
arz
,
'arz2'
:
arz2
,
'arz3'
:
arz3
,
'datagot'
:
inputdate
}
template
=
loader
.
get_template
(
'Admin/Result.html'
)
return
HttpResponse
(
template
.
render
(
context
,
request
))
else
:
form
=
MyForm4
()
# returning form
return
render
(
request
,
'Admin/Forecasting.html'
,
{
'form'
:
form
});
# end Admin ML
# End Demand Forecasting Machine Learning Model
# start Admin ML
def
HighestDemand
(
request
):
if
request
.
method
==
'POST'
:
myForm
=
MyFormNew
(
request
.
POST
)
if
myForm
.
is_valid
():
df
=
pd
.
read_csv
(
'Data/Purchasefile.csv'
)
df
=
df
.
drop
([
'Price1'
,
'Price2'
,
'Price3'
],
axis
=
1
)
df
.
head
()
## Cleaning up the data
df
.
columns
=
[
"Month"
,
"CALTEX_Delo_Gold_Ultra"
,
"Substitude_Product_Price1"
,
"Production_cost_per_unit1"
,
"VIC_Hino_Fuel_Filter"
,
"Substitude_Product_Price2"
,
"Production_cost_per_unit2"
,
"CALTEX_Texamatic_1888_Transmision_Oil"
,
"Substitude_Product_Price3"
,
"Production_cost_per_unit3"
]
rrr
=
df
.
head
()
# Convert Month into Datetime
df
[
'Month'
]
=
pd
.
to_datetime
(
df
[
'Month'
])
df
.
set_index
(
'Month'
,
inplace
=
True
)
df
.
describe
()
from
statsmodels.tsa.stattools
import
adfuller
test_result
=
adfuller
(
df
[
'CALTEX_Delo_Gold_Ultra'
])
test_result2
=
adfuller
(
df
[
'VIC_Hino_Fuel_Filter'
])
test_result2
=
adfuller
(
df
[
'CALTEX_Texamatic_1888_Transmision_Oil'
])
def
adfuller_test
(
CALTEX_Delo_Gold_Ultra
):
result
=
adfuller
(
CALTEX_Delo_Gold_Ultra
)
labels
=
[
'ADF Test Statistic'
,
'p-value'
,
'#Lags Used'
,
'Number of Observations Used'
]
for
value
,
label
in
zip
(
result
,
labels
):
print
(
label
+
' : '
+
str
(
value
))
def
adfuller_test2
(
VIC_Hino_Fuel_Filter
):
result2
=
adfuller
(
VIC_Hino_Fuel_Filter
)
labels
=
[
'ADF Test Statistic'
,
'p-value'
,
'#Lags Used'
,
'Number of Observations Used'
]
for
value
,
label
in
zip
(
result2
,
labels
):
print
(
label
+
' : '
+
str
(
value
))
def
adfuller_test3
(
CALTEX_Texamatic_1888_Transmision_Oil
):
result3
=
adfuller
(
CALTEX_Texamatic_1888_Transmision_Oil
)
labels
=
[
'ADF Test Statistic'
,
'p-value'
,
'#Lags Used'
,
'Number of Observations Used'
]
for
value
,
label
in
zip
(
result3
,
labels
):
print
(
label
+
' : '
+
str
(
value
))
adfuller_test
(
df
[
'CALTEX_Delo_Gold_Ultra'
])
adfuller_test2
(
df
[
'VIC_Hino_Fuel_Filter'
])
adfuller_test3
(
df
[
'CALTEX_Texamatic_1888_Transmision_Oil'
])
df
[
'Seasonal First Difference'
]
=
df
[
'CALTEX_Delo_Gold_Ultra'
]
-
df
[
'CALTEX_Delo_Gold_Ultra'
]
.
shift
(
1
)
# df['Product1 First Difference2'] = df['Price1'] - df['Price1'].shift(1)
df
[
'Seasonal First Difference2'
]
=
df
[
'VIC_Hino_Fuel_Filter'
]
-
df
[
'VIC_Hino_Fuel_Filter'
]
.
shift
(
12
)
# df['Seasonal First Difference2'] = df['Price1'] - df['Price1'].shift(12)
df
[
'Seasonal First Difference3'
]
=
df
[
'CALTEX_Texamatic_1888_Transmision_Oil'
]
-
df
[
'CALTEX_Texamatic_1888_Transmision_Oil'
]
.
shift
(
12
)
# df['Seasonal First Difference2'] = df['Price1'] - df['Price1'].shift(12)
adfuller_test
(
df
[
'Seasonal First Difference'
]
.
dropna
())
adfuller_test2
(
df
[
'Seasonal First Difference2'
]
.
dropna
())
adfuller_test3
(
df
[
'Seasonal First Difference3'
]
.
dropna
())
import
statsmodels.api
as
sm
from
statsmodels.tsa.arima.model
import
ARIMA
model
=
ARIMA
(
df
[
'CALTEX_Delo_Gold_Ultra'
],
order
=
(
1
,
0
,
0
))
model2
=
ARIMA
(
df
[
'VIC_Hino_Fuel_Filter'
],
order
=
(
1
,
0
,
0
))
model3
=
ARIMA
(
df
[
'CALTEX_Texamatic_1888_Transmision_Oil'
],
order
=
(
1
,
0
,
0
))
model_fit
=
model
.
fit
()
model_fit2
=
model2
.
fit
()
model_fit3
=
model3
.
fit
()
df
[
'forecast'
]
=
model_fit
.
predict
(
start
=
104
,
end
=
120
,
dynamic
=
True
)
df
[
'forecastP2'
]
=
model_fit2
.
predict
(
start
=
104
,
end
=
120
,
dynamic
=
True
)
df
[
'forecast3'
]
=
model_fit3
.
predict
(
start
=
104
,
end
=
120
,
dynamic
=
True
)
# df[['Product1','forecast']].plot(figsize=(12,8))
model
=
sm
.
tsa
.
statespace
.
SARIMAX
(
df
[
'CALTEX_Delo_Gold_Ultra'
],
order
=
(
1
,
1
,
1
),
seasonal_order
=
(
1
,
1
,
1
,
12
))
model2
=
sm
.
tsa
.
statespace
.
SARIMAX
(
df
[
'VIC_Hino_Fuel_Filter'
],
order
=
(
1
,
1
,
1
),
seasonal_order
=
(
1
,
1
,
1
,
12
))
model3
=
sm
.
tsa
.
statespace
.
SARIMAX
(
df
[
'CALTEX_Texamatic_1888_Transmision_Oil'
],
order
=
(
1
,
1
,
1
),
seasonal_order
=
(
1
,
1
,
1
,
12
))
results
=
model
.
fit
()
results2
=
model2
.
fit
()
results3
=
model3
.
fit
()
from
pandas.tseries.offsets
import
DateOffset
future_dates
=
[
df
.
index
[
-
1
]
+
DateOffset
(
months
=
x
)
for
x
in
range
(
0
,
150
)]
future_datest_df
=
pd
.
DataFrame
(
index
=
future_dates
[
1
:],
columns
=
df
.
columns
)
future_df
=
pd
.
concat
([
df
,
future_datest_df
])
inputdatex
=
myForm
.
cleaned_data
[
'inputdate'
]
inputdate
=
datetime
.
strftime
(
inputdatex
,
"
%
m/
%
d/
%
Y"
)
lastDate
=
'07/01/2020'
inputdate
=
inputdate
date_format
=
"
%
m/
%
d/
%
Y"
a
=
datetime
.
strptime
(
lastDate
,
date_format
)
# user input date
b
=
datetime
.
strptime
(
inputdate
,
date_format
)
delta
=
b
-
a
delta2
=
delta
.
days
# print(delta2)
forcasting_date
=
int
(
delta2
/
30
)
newDate
=
forcasting_date
+
102
# ending number
# print(forcasting_date)
forecast
=
future_df
[
'forecast'
]
=
results
.
predict
(
start
=
104
,
end
=
newDate
,
dynamic
=
True
)
forecastP2
=
future_df
[
'forecastP2'
]
=
results2
.
predict
(
start
=
104
,
end
=
newDate
,
dynamic
=
True
)
forecastP3
=
future_df
[
'forecastP3'
]
=
results3
.
predict
(
start
=
104
,
end
=
newDate
,
dynamic
=
True
)
df3
=
forecast
[
-
1
]
# 1st product
df4
=
forecastP2
[
-
1
]
# 2nd product
df5
=
forecastP3
[
-
1
]
# 3rd product
print
(
int
(
df3
))
print
(
int
(
df4
))
print
(
int
(
df5
))
maxvalue
=
max
(
df3
,
df4
,
df5
)
# arz = int(maxvalue)
if
(
maxvalue
==
df3
):
arz
=
"CALTEX_Delo_Gold_Ultra"
if
(
maxvalue
==
df4
):
arz
=
"VIC_Hino_Fuel_Filter"
if
(
maxvalue
==
df5
):
arz
=
"CALTEX_Texamatic_1888_Transmision_Oil"
context
=
{
'arz'
:
arz
,
'datagot'
:
inputdate
}
template
=
loader
.
get_template
(
'Admin/Result2.html'
)
#returing the template
return
HttpResponse
(
template
.
render
(
context
,
request
))
else
:
form
=
MyFormNew
()
#returning form
return
render
(
request
,
'Admin/HighestDemand.html'
,
{
'form'
:
form
});
# end Admin ML
# Customer Data
def
Customer_Data
(
request
):
...
...
db.sqlite3
View file @
05d4870e
No preview for this file type
templates/Admin/Forecasting.html
View file @
05d4870e
...
...
@@ -38,7 +38,7 @@
{{form.as_table}}
</table>
<input
type=
"submit"
value=
"FORECAST"
class=
"btn btn--radius-2 btn"
style=
"background:
#02111f
"
/>
<input
type=
"submit"
value=
"FORECAST"
class=
"btn btn--radius-2 btn"
style=
"background:
#747578; border: none; color: white;
"
/>
<div
role=
"alert"
>
...
...
templates/Admin/Sidebar2.html
View file @
05d4870e
...
...
@@ -184,7 +184,7 @@ body{
<li><a
style=
"text-decoration:none;"
href=
"/Admin/EmployeeStatus_Update/"
><i
class=
"fas fa-upload"
></i>
Assign Employee
</a>
</li>
<li><a
style=
"text-decoration:none;"
href=
"/Admin/Forecasting/"
><i
class=
"fas fa-bullseye "
></i>
Demand Forecasting
</a>
<li><a
style=
"text-decoration:none;"
href=
"
#
"
><i
class=
"fas fa-eye"
></i>
Highest Demand
</a>
<li><a
style=
"text-decoration:none;"
href=
"
/Admin/HighestDemand/
"
><i
class=
"fas fa-eye"
></i>
Highest Demand
</a>
<li><a
style=
"text-decoration:none;"
href=
"/Admin/PurchaseHistory/"
><i
class=
"fas fa-cubes"
></i>
Purchase History
</a>
<li><a
style=
"text-decoration:none;"
href=
"/Admin/Customer_Data/"
><i
class=
"fas fa-user"
></i>
Customer Data
</a>
<li><a
style=
"text-decoration:none;"
href=
"/Admin/Customer_Frequency/"
><i
class=
"fas fa-chart-bar"
></i>
Customer Frequency
</a>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment