Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
W
Water Level Detector
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
21_22J-64
Water Level
Water Level Detector
Commits
25683f27
Commit
25683f27
authored
Mar 30, 2022
by
Jathursini perinpanathan
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
3bc0126e
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
129 additions
and
0 deletions
+129
-0
train.py
train.py
+129
-0
No files found.
train.py
0 → 100644
View file @
25683f27
import
numpy
as
np
import
random
import
json
import
torch
import
torch.nn
as
nn
from
torch.utils.data
import
Dataset
,
DataLoader
from
nltk_utils
import
bag_of_words
,
tokenize
,
stem
from
model
import
NeuralNet
with
open
(
'intents.json'
,
'r'
)
as
f
:
intents
=
json
.
load
(
f
)
all_words
=
[]
tags
=
[]
xy
=
[]
# loop through each sentence in our intents patterns
for
intent
in
intents
[
'intents'
]:
tag
=
intent
[
'tag'
]
# add to tag list
tags
.
append
(
tag
)
for
pattern
in
intent
[
'patterns'
]:
# tokenize each word in the sentence
w
=
tokenize
(
pattern
)
# add to our words list
all_words
.
extend
(
w
)
# add to xy pair
xy
.
append
((
w
,
tag
))
# stem and lower each word
ignore_words
=
[
'?'
,
'.'
,
'!'
]
all_words
=
[
stem
(
w
)
for
w
in
all_words
if
w
not
in
ignore_words
]
# remove duplicates and sort
all_words
=
sorted
(
set
(
all_words
))
tags
=
sorted
(
set
(
tags
))
print
(
len
(
xy
),
"patterns"
)
print
(
len
(
tags
),
"tags:"
,
tags
)
print
(
len
(
all_words
),
"unique stemmed words:"
,
all_words
)
# create training data
X_train
=
[]
y_train
=
[]
for
(
pattern_sentence
,
tag
)
in
xy
:
# X: bag of words for each pattern_sentence
bag
=
bag_of_words
(
pattern_sentence
,
all_words
)
X_train
.
append
(
bag
)
# y: PyTorch CrossEntropyLoss needs only class labels, not one-hot
label
=
tags
.
index
(
tag
)
y_train
.
append
(
label
)
X_train
=
np
.
array
(
X_train
)
y_train
=
np
.
array
(
y_train
)
# Hyper-parameters
num_epochs
=
1000
batch_size
=
8
learning_rate
=
0.001
input_size
=
len
(
X_train
[
0
])
hidden_size
=
8
output_size
=
len
(
tags
)
print
(
input_size
,
output_size
)
class
ChatDataset
(
Dataset
):
def
__init__
(
self
):
self
.
n_samples
=
len
(
X_train
)
self
.
x_data
=
X_train
self
.
y_data
=
y_train
# support indexing such that dataset[i] can be used to get i-th sample
def
__getitem__
(
self
,
index
):
return
self
.
x_data
[
index
],
self
.
y_data
[
index
]
# we can call len(dataset) to return the size
def
__len__
(
self
):
return
self
.
n_samples
dataset
=
ChatDataset
()
train_loader
=
DataLoader
(
dataset
=
dataset
,
batch_size
=
batch_size
,
shuffle
=
True
,
num_workers
=
0
)
device
=
torch
.
device
(
'cuda'
if
torch
.
cuda
.
is_available
()
else
'cpu'
)
model
=
NeuralNet
(
input_size
,
hidden_size
,
output_size
)
.
to
(
device
)
# Loss and optimizer
criterion
=
nn
.
CrossEntropyLoss
()
optimizer
=
torch
.
optim
.
Adam
(
model
.
parameters
(),
lr
=
learning_rate
)
# Train the model
for
epoch
in
range
(
num_epochs
):
for
(
words
,
labels
)
in
train_loader
:
words
=
words
.
to
(
device
)
labels
=
labels
.
to
(
dtype
=
torch
.
long
)
.
to
(
device
)
# Forward pass
outputs
=
model
(
words
)
# if y would be one-hot, we must apply
# labels = torch.max(labels, 1)[1]
loss
=
criterion
(
outputs
,
labels
)
# Backward and optimize
optimizer
.
zero_grad
()
loss
.
backward
()
optimizer
.
step
()
if
(
epoch
+
1
)
%
100
==
0
:
print
(
f
'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}'
)
print
(
f
'final loss: {loss.item():.4f}'
)
data
=
{
"model_state"
:
model
.
state_dict
(),
"input_size"
:
input_size
,
"hidden_size"
:
hidden_size
,
"output_size"
:
output_size
,
"all_words"
:
all_words
,
"tags"
:
tags
}
FILE
=
"data.pth"
torch
.
save
(
data
,
FILE
)
print
(
f
'training complete. file saved to {FILE}'
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment