Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
2
2022-089
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Deshini Perera
2022-089
Commits
d643e8cc
Commit
d643e8cc
authored
Oct 08, 2022
by
Deshini Perera
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add new file
parents
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
118 additions
and
0 deletions
+118
-0
Obj_main.py
Obj_main.py
+118
-0
No files found.
Obj_main.py
0 → 100644
View file @
d643e8cc
import
cv2
import
time
import
argparse
import
numpy
as
np
import
array
arr1
=
list
()
def
yolov3
(
yolo_weights
,
yolo_cfg
,
coco_names
):
net
=
cv2
.
dnn
.
readNet
(
yolo_weights
,
yolo_cfg
)
classes
=
open
(
coco_names
)
.
read
()
.
strip
()
.
split
(
"
\n
"
)
layer_names
=
net
.
getLayerNames
()
output_layers
=
[
layer_names
[
i
-
1
]
for
i
in
net
.
getUnconnectedOutLayers
()]
return
net
,
classes
,
output_layers
def
perform_detection
(
net
,
img
,
output_layers
,
w
,
h
,
confidence_threshold
):
blob
=
cv2
.
dnn
.
blobFromImage
(
img
,
1
/
255.
,
(
224
,
224
),
swapRB
=
True
,
crop
=
True
)
net
.
setInput
(
blob
)
layer_outputs
=
net
.
forward
(
output_layers
)
boxes
=
[]
confidences
=
[]
class_ids
=
[]
for
output
in
layer_outputs
:
for
detection
in
output
:
scores
=
detection
[
5
:]
class_id
=
np
.
argmax
(
scores
)
confidence
=
scores
[
class_id
]
# Object is deemed to be detected
if
confidence
>
confidence_threshold
:
# center_x, center_y, width, height = (detection[0:4] * np.array([w, h, w, h])).astype('int')
center_x
,
center_y
,
width
,
height
=
list
(
map
(
int
,
detection
[
0
:
4
]
*
[
w
,
h
,
w
,
h
]))
# print(center_x, center_y, width, height)
top_left_x
=
int
(
center_x
-
(
width
/
2
))
top_left_y
=
int
(
center_y
-
(
height
/
2
))
boxes
.
append
([
top_left_x
,
top_left_y
,
width
,
height
])
confidences
.
append
(
float
(
confidence
))
class_ids
.
append
(
class_id
)
return
boxes
,
confidences
,
class_ids
def
draw_boxes
(
boxes
,
confidences
,
class_ids
,
classes
,
img
,
colors
,
confidence_threshold
,
NMS_threshold
):
indexes
=
cv2
.
dnn
.
NMSBoxes
(
boxes
,
confidences
,
confidence_threshold
,
NMS_threshold
)
FONT
=
cv2
.
FONT_HERSHEY_SIMPLEX
if
len
(
indexes
)
>
0
:
for
i
in
indexes
.
flatten
():
x
,
y
,
w
,
h
=
boxes
[
i
]
# print(len(colors[class_ids[i]]))
color
=
colors
[
i
]
cv2
.
rectangle
(
img
,
(
x
,
y
),
(
x
+
w
,
y
+
h
),
color
,
2
)
# text = f"{class_ids[i]} -- {confidences[i]}"
text
=
"{}: {:.4f}"
.
format
(
classes
[
class_ids
[
i
]],
confidences
[
i
])
cv2
.
putText
(
img
,
text
,
(
x
,
y
-
5
),
FONT
,
0.5
,
color
,
2
)
v
=
(
classes
[
class_ids
[
i
]])
#print('Detetcted : ', (classes[class_ids[i]]))
if
v
not
in
arr1
:
arr1
.
append
(
v
)
cv2
.
imshow
(
"Detection"
,
img
)
print
(
'detected Items are : '
,
arr1
)
return
arr1
def
dectection_video_file
(
webcam
,
video_path
,
yolo_weights
,
yolo_cfg
,
coco_names
,
confidence_threshold
,
nms_threshold
):
net
,
classes
,
output_layers
=
yolov3
(
yolo_weights
,
yolo_cfg
,
coco_names
)
colors
=
np
.
random
.
uniform
(
0
,
255
,
size
=
(
len
(
classes
),
3
))
if
webcam
:
video
=
cv2
.
VideoCapture
(
0
)
time
.
sleep
(
2.0
)
else
:
video
=
cv2
.
VideoCapture
(
video_path
)
while
True
:
ret
,
image
=
video
.
read
()
h
,
w
,
_
=
image
.
shape
boxes
,
confidences
,
class_ids
=
perform_detection
(
net
,
image
,
output_layers
,
w
,
h
,
confidence_threshold
)
Items
=
draw_boxes
(
boxes
,
confidences
,
class_ids
,
classes
,
image
,
colors
,
confidence_threshold
,
nms_threshold
)
key
=
cv2
.
waitKey
(
1
)
&
0xFF
if
key
==
ord
(
"q"
):
break
quit
()
video
.
release
()
return
Items
if
__name__
==
'__main__'
:
ap
=
argparse
.
ArgumentParser
()
ap
.
add_argument
(
'--video'
,
help
=
'Path to video file'
,
default
=
None
)
ap
.
add_argument
(
'--camera'
,
help
=
'To use the live feed from web-cam'
,
type
=
bool
,
default
=
True
)
ap
.
add_argument
(
'--weights'
,
help
=
'Path to model weights'
,
type
=
str
,
default
=
'yolov3-tiny.weights'
)
ap
.
add_argument
(
'--configs'
,
help
=
'Path to model configs'
,
type
=
str
,
default
=
'yolov3-tiny.cfg'
)
ap
.
add_argument
(
'--class_names'
,
help
=
'Path to class-names text file'
,
type
=
str
,
default
=
'coco.names'
)
ap
.
add_argument
(
'--conf_thresh'
,
help
=
'Confidence threshold value'
,
default
=
0.5
)
ap
.
add_argument
(
'--nms_thresh'
,
help
=
'Confidence threshold value'
,
default
=
0.4
)
args
=
vars
(
ap
.
parse_args
())
image_path
=
args
[
'image'
]
yolo_weights
,
yolo_cfg
,
coco_names
=
args
[
'weights'
],
args
[
'configs'
],
args
[
'class_names'
]
confidence_threshold
=
args
[
'conf_thresh'
]
nms_threshold
=
args
[
'nms_thresh'
]
webcam
=
args
[
'camera'
]
video_path
=
args
[
'video'
]
dectection_video_file
(
webcam
,
video_path
,
yolo_weights
,
yolo_cfg
,
coco_names
,
confidence_threshold
,
nms_threshold
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment