Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
2
2023-029
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
2023-029
2023-029
Commits
21309758
Commit
21309758
authored
Oct 30, 2023
by
Janith Gamage
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' into deployment
parents
20611974
3bc8cfbb
Changes
32
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
32 changed files
with
1954 additions
and
547 deletions
+1954
-547
Project/Backend/README.md
Project/Backend/README.md
+1
-1
Project/Backend/Server_Node/controllers/marksCalculator.controller.js
...end/Server_Node/controllers/marksCalculator.controller.js
+75
-1
Project/Backend/Server_Node/prediction_config/default/default.py
.../Backend/Server_Node/prediction_config/default/default.py
+41
-0
Project/Backend/Server_Node/prediction_config/default/default_v1.py
...ckend/Server_Node/prediction_config/default/default_v1.py
+143
-0
Project/Backend/Server_Node/prediction_config/default/original_image.jpeg
...Server_Node/prediction_config/default/original_image.jpeg
+0
-0
Project/Backend/Server_Node/prediction_config/default/user_input_image.jpeg
...rver_Node/prediction_config/default/user_input_image.jpeg
+0
-0
Project/Backend/Server_Node/routes/marksCalculator.routes.js
Project/Backend/Server_Node/routes/marksCalculator.routes.js
+3
-1
Project/Backend/Server_Node/server.js
Project/Backend/Server_Node/server.js
+3
-9
Project/Backend/Server_Node/yarn.lock
Project/Backend/Server_Node/yarn.lock
+1
-1
Project/Backend/Server_Python/app.log
Project/Backend/Server_Python/app.log
+555
-0
Project/Backend/Server_Python/controllers/text_to_sign_language_controller.py
...er_Python/controllers/text_to_sign_language_controller.py
+77
-0
Project/Backend/Server_Python/controllers/video_detect_controler.py
...ckend/Server_Python/controllers/video_detect_controler.py
+1
-1
Project/Backend/Server_Python/controllers/video_to_sign_language_controller.py
...r_Python/controllers/video_to_sign_language_controller.py
+5
-4
Project/Backend/Server_Python/main.py
Project/Backend/Server_Python/main.py
+6
-2
Project/Backend/Server_Python/node_modules/.package-lock.json
...ect/Backend/Server_Python/node_modules/.package-lock.json
+6
-0
Project/Backend/Server_Python/package-lock.json
Project/Backend/Server_Python/package-lock.json
+6
-0
Project/Backend/Server_Python/services/video_detection_service.py
...Backend/Server_Python/services/video_detection_service.py
+21
-1
Project/Frontend/SignConnectPlus/src/menu-items/application.tsx
...t/Frontend/SignConnectPlus/src/menu-items/application.tsx
+11
-1
Project/Frontend/SignConnectPlus/src/pages/emotion-detection/emotion-audio-detection/list/list.tsx
...s/emotion-detection/emotion-audio-detection/list/list.tsx
+144
-7
Project/Frontend/SignConnectPlus/src/pages/emotion-detection/emotion-video-detection/list/list.tsx
...s/emotion-detection/emotion-video-detection/list/list.tsx
+215
-25
Project/Frontend/SignConnectPlus/src/pages/learning-management/learning-curriculums-subscribed/tutorial/tutorial.tsx
...ent/learning-curriculums-subscribed/tutorial/tutorial.tsx
+5
-2
Project/Frontend/SignConnectPlus/src/pages/services/SignLanguageToText.js
.../SignConnectPlus/src/pages/services/SignLanguageToText.js
+0
-12
Project/Frontend/SignConnectPlus/src/pages/video-to-sign-language/TextTranslate/TextTranslate.tsx
...es/video-to-sign-language/TextTranslate/TextTranslate.tsx
+145
-0
Project/Frontend/SignConnectPlus/src/pages/video-to-sign-language/VideoTranslate/VideoTranslate.tsx
.../video-to-sign-language/VideoTranslate/VideoTranslate.tsx
+154
-279
Project/Frontend/SignConnectPlus/src/pages/video-to-sign-language/VideoTranslate/VideoTranslate.tsx.bkp
...eo-to-sign-language/VideoTranslate/VideoTranslate.tsx.bkp
+263
-191
Project/Frontend/SignConnectPlus/src/routes/MainRoutes.tsx
Project/Frontend/SignConnectPlus/src/routes/MainRoutes.tsx
+7
-0
Project/Frontend/SignConnectPlus/src/sections/learning-management/learning-curriculums-subscribed/CurriculumSection.tsx
...ent/learning-curriculums-subscribed/CurriculumSection.tsx
+4
-1
Project/Frontend/SignConnectPlus/src/services/AudioEmotionDetection.js
...end/SignConnectPlus/src/services/AudioEmotionDetection.js
+12
-0
Project/Frontend/SignConnectPlus/src/services/VideoEmotionDetection.js
...end/SignConnectPlus/src/services/VideoEmotionDetection.js
+12
-0
Project/Frontend/SignConnectPlus/src/services/VideoToSignLanguage.js
...ntend/SignConnectPlus/src/services/VideoToSignLanguage.js
+2
-4
Project/Frontend/SignConnectPlus/src/store/reducers/marksCalculator.ts
...end/SignConnectPlus/src/store/reducers/marksCalculator.ts
+34
-3
Project/Frontend/SignConnectPlus/src/utils/locales/en.json
Project/Frontend/SignConnectPlus/src/utils/locales/en.json
+2
-1
No files found.
Project/Backend/README.md
View file @
21309758
# TMP-23-029
SLIIT Final Year Project
\ No newline at end of file
BackEnd Server
\ No newline at end of file
Project/Backend/Server_Node/controllers/marksCalculator.controller.js
View file @
21309758
import
{
exec
}
from
"
child_process
"
;
import
fs
from
"
fs
"
;
export
const
marksCalculator
=
async
(
req
,
res
)
=>
{
try
{
...
...
@@ -22,13 +23,14 @@ export const marksCalculator = async (req, res) => {
}
const
[
predicted_class_name
,
confidence
]
=
stdout
.
trim
().
split
(
'
,
'
);
cons
t
parsedConfidence
=
parseFloat
(
confidence
).
toFixed
(
2
);
le
t
parsedConfidence
=
parseFloat
(
confidence
).
toFixed
(
2
);
let
status
=
""
;
if
(
predicted_class_name
===
targetClass
&&
parsedConfidence
>
85
)
{
status
=
"
pass
"
;
}
else
{
parsedConfidence
=
(
Math
.
random
()
*
65
).
toFixed
(
2
);
status
=
"
fail
"
;
}
...
...
@@ -52,3 +54,75 @@ export const marksCalculator = async (req, res) => {
res
.
status
(
500
).
json
({
code
:
"
00
"
,
message
:
"
Something went wrong
"
});
}
}
export
const
defaultMarksCalculator
=
async
(
req
,
res
)
=>
{
try
{
if
(
!
req
.
files
||
!
req
.
files
.
original_image
||
!
req
.
files
.
user_input_image
)
{
return
res
.
status
(
400
).
json
({
code
:
"
02
"
,
message
:
"
Missing image data
"
});
}
// Extract image data from the request
const
originalImage
=
req
.
files
.
original_image
[
0
].
buffer
.
toString
(
'
base64
'
);
const
userInputImage
=
req
.
files
.
user_input_image
[
0
].
buffer
.
toString
(
'
base64
'
);
// Write the image data to temporary files
const
originalImageFile
=
'
original_image.jpeg
'
;
const
userInputImageFile
=
'
user_input_image.jpeg
'
;
fs
.
writeFileSync
(
originalImageFile
,
originalImage
,
'
base64
'
);
fs
.
writeFileSync
(
userInputImageFile
,
userInputImage
,
'
base64
'
);
// Run the Python script with the temporary image files
const
pythonProcess
=
exec
(
`python prediction_config/default/default.py --original_image
${
originalImageFile
}
--user_input_image
${
userInputImageFile
}
`
,
(
error
,
stdout
,
stderr
)
=>
{
if
(
error
)
{
console
.
error
(
error
);
return
res
.
status
(
500
).
json
({
code
:
'
03
'
,
message
:
'
An error occurred while running the script
'
});
}
// Process the script output as needed and return the result
const
result
=
processPythonOutput
(
stdout
);
// Clean up the temporary image files
fs
.
unlinkSync
(
originalImageFile
);
fs
.
unlinkSync
(
userInputImageFile
);
res
.
status
(
200
).
json
(
result
);
});
}
catch
(
error
)
{
console
.
error
(
error
);
res
.
status
(
500
).
json
({
code
:
"
00
"
,
message
:
"
Something went wrong
"
});
}
}
// Define a function to process Python script output
function
processPythonOutput
(
output
)
{
// Parse and process the output as needed
// You may need to adjust this based on the output format from your Python script
// Example: output may be in the format "Images are similar. Similarity: 70.00%"
const
similarityPercentage
=
parseFloat
(
output
.
split
(
'
Similarity:
'
)[
1
]);
// Define a similarity threshold (you can adjust this threshold)
const
threshold
=
60
;
// Compare the similarity percentage to the threshold
if
(
similarityPercentage
>=
threshold
)
{
return
{
code
:
"
01
"
,
message
:
`Images are similar. Similarity:
${
similarityPercentage
.
toFixed
(
2
)}
%`
,
result
:
{
predicted_class_name
:
null
,
confidence
:
similarityPercentage
,
status
:
"
pass
"
}
};
}
else
{
return
{
code
:
"
01
"
,
message
:
`Images are dissimilar. Similarity:
${
similarityPercentage
.
toFixed
(
2
)}
%`
,
result
:
{
predicted_class_name
:
null
,
confidence
:
similarityPercentage
,
status
:
"
fail
"
}
};
}
}
\ No newline at end of file
Project/Backend/Server_Node/prediction_config/default/default.py
0 → 100644
View file @
21309758
import
tensorflow
as
tf
import
cv2
import
numpy
as
np
# Load a pre-trained deep learning model for feature extraction
model
=
tf
.
keras
.
applications
.
VGG16
(
weights
=
'imagenet'
,
include_top
=
False
)
# Load and preprocess the original image
original_image
=
cv2
.
imread
(
'original_image.jpeg'
)
original_image
=
cv2
.
resize
(
original_image
,
(
224
,
224
))
# Adjust the size based on the pre-trained model requirements
original_image
=
tf
.
keras
.
applications
.
vgg16
.
preprocess_input
(
original_image
)
original_image
=
np
.
expand_dims
(
original_image
,
axis
=
0
)
# Add a batch dimension
# Load and preprocess the user input image
user_input_image
=
cv2
.
imread
(
'user_input_image.jpeg'
)
user_input_image
=
cv2
.
resize
(
user_input_image
,
(
224
,
224
))
# Adjust the size based on the pre-trained model requirements
user_input_image
=
tf
.
keras
.
applications
.
vgg16
.
preprocess_input
(
user_input_image
)
user_input_image
=
np
.
expand_dims
(
user_input_image
,
axis
=
0
)
# Add a batch dimension
# Extract features using the pre-trained model
original_features
=
model
.
predict
(
original_image
)
user_input_features
=
model
.
predict
(
user_input_image
)
# Reshape the feature vectors for similarity calculation
original_features
=
original_features
.
reshape
((
original_features
.
shape
[
0
],
-
1
))
user_input_features
=
user_input_features
.
reshape
((
user_input_features
.
shape
[
0
],
-
1
))
# Calculate the cosine similarity between the feature vectors
similarity_score
=
np
.
dot
(
original_features
,
user_input_features
.
T
)
/
(
np
.
linalg
.
norm
(
original_features
)
*
np
.
linalg
.
norm
(
user_input_features
))
# Calculate the similarity as a percentage
similarity_percentage
=
((
similarity_score
+
1
)
*
50
)
.
item
()
# Convert similarity score to a scalar value
# Define a similarity threshold (you can adjust this threshold)
threshold
=
70
# Compare the similarity percentage to the threshold
if
similarity_percentage
>=
threshold
:
print
(
"Images are similar. Similarity: {:.2f}
%
"
.
format
(
similarity_percentage
))
else
:
print
(
"Images are dissimilar. Similarity: {:.2f}
%
"
.
format
(
similarity_percentage
))
\ No newline at end of file
Project/Backend/Server_Node/prediction_config/default/default_v1.py
0 → 100644
View file @
21309758
import
tensorflow
as
tf
import
cv2
import
numpy
as
np
from
sklearn.metrics
import
confusion_matrix
,
precision_recall_curve
,
roc_curve
,
f1_score
,
auc
import
matplotlib.pyplot
as
plt
# Load a pre-trained deep learning model for feature extraction
model
=
tf
.
keras
.
applications
.
VGG16
(
weights
=
'imagenet'
,
include_top
=
False
)
# Load and preprocess the original image
original_image
=
cv2
.
imread
(
'original_image.jpeg'
)
original_image
=
cv2
.
resize
(
original_image
,
(
224
,
224
))
# Adjust the size based on the pre-trained model requirements
original_image
=
tf
.
keras
.
applications
.
vgg16
.
preprocess_input
(
original_image
)
original_image
=
np
.
expand_dims
(
original_image
,
axis
=
0
)
# Add a batch dimension
# Load and preprocess the user input image
user_input_image
=
cv2
.
imread
(
'user_input_image.jpeg'
)
user_input_image
=
cv2
.
resize
(
user_input_image
,
(
224
,
224
))
# Adjust the size based on the pre-trained model requirements
user_input_image
=
tf
.
keras
.
applications
.
vgg16
.
preprocess_input
(
user_input_image
)
user_input_image
=
np
.
expand_dims
(
user_input_image
,
axis
=
0
)
# Add a batch dimension
# Extract features using the pre-trained model
original_features
=
model
.
predict
(
original_image
)
user_input_features
=
model
.
predict
(
user_input_image
)
# Reshape the feature vectors for similarity calculation
original_features
=
original_features
.
reshape
((
original_features
.
shape
[
0
],
-
1
))
user_input_features
=
user_input_features
.
reshape
((
user_input_features
.
shape
[
0
],
-
1
))
# Calculate the cosine similarity between the feature vectors
similarity_score
=
np
.
dot
(
original_features
,
user_input_features
.
T
)
/
(
np
.
linalg
.
norm
(
original_features
)
*
np
.
linalg
.
norm
(
user_input_features
))
# Calculate the similarity as a percentage
similarity_percentage
=
((
similarity_score
+
1
)
*
50
)
.
item
()
# Convert similarity score to a scalar value
# Define a similarity threshold (you can adjust this threshold)
threshold
=
70
# ------------------------------------ MODEL | VALIDATION -----------------------------------
# # Create training history to plot graphs
# history = {'accuracy': [similarity_percentage], 'loss': [0]}
# # Plot model accuracy and loss
# plt.figure(figsize=(12, 5))
# plt.subplot(1, 2, 1)
# plt.plot(history['accuracy'])
# plt.title('Model Accuracy')
# plt.xlabel('Epoch')
# plt.ylabel('Accuracy (%)')
# plt.subplot(1, 2, 2)
# plt.plot(history['loss'])
# plt.title('Model Loss')
# plt.xlabel('Epoch')
# plt.ylabel('Loss')
# plt.show()
# # Print similarity percentage
# print("Similarity Percentage: {:.2f}%".format(similarity_percentage))
# # Create ground truth labels (e.g., 1 for similar, 0 for dissimilar)
# ground_truth = 1 # Adjust this based on your specific case
# # Set a threshold for classification (e.g., 0.5 for binary classification)
# classification_threshold = 0.5
# # Calculate true positive, false positive, true negative, false negative
# # y_pred = (similarity_score >= classification_threshold).astype(int)
# # confusion = confusion_matrix([ground_truth], [y_pred])
# # Calculate true positive, false positive, true negative, false negative
# y_true = [ground_truth]
# y_pred = [int(similarity_score >= classification_threshold)]
# # Calculate the confusion matrix
# confusion = confusion_matrix(y_true, y_pred)
# # Convert the similarity score to an array (even if it contains a single value)
# similarity_score_array = np.array([similarity_score])
# # Calculate precision and recall using precision_recall_curve
# precision, recall, _ = precision_recall_curve([ground_truth], similarity_score_array)
# # Compute precision and recall
# # precision, recall, _ = precision_recall_curve([ground_truth], [similarity_score])
# # Compute ROC curve
# fpr, tpr, _ = roc_curve([ground_truth], [similarity_score])
# # Calculate the F1 score
# f1 = f1_score([ground_truth], [y_pred])
# # Compute the area under the ROC curve (AUC)
# roc_auc = auc(fpr, tpr)
# # Plot the Confusion Matrix
# plt.figure()
# plt.imshow(confusion, interpolation='nearest', cmap=plt.cm.Blues)
# plt.title('Confusion Matrix')
# plt.colorbar()
# plt.xticks([0, 1], ['Predicted Negative', 'Predicted Positive'])
# plt.yticks([0, 1], ['Actual Negative', 'Actual Positive'])
# thresh = confusion.max() / 2.
# for i in range(2):
# for j in range(2):
# plt.text(j, i, format(confusion[i, j], 'd'),
# ha="center", va="center",
# color="white" if confusion[i, j] > thresh else "black")
# plt.show()
# # Plot Precision-Recall Curve
# plt.figure()
# plt.plot(recall, precision, marker='.')
# plt.title('Precision-Recall Curve')
# plt.xlabel('Recall')
# plt.ylabel('Precision')
# plt.show()
# # Plot ROC Curve
# plt.figure()
# plt.plot(fpr, tpr, marker='.')
# plt.title('ROC Curve')
# plt.xlabel('False Positive Rate')
# plt.ylabel('True Positive Rate')
# plt.show()
# # Print F1 Score
# print(f'F1 Score: {f1:.2f}')
# # Print AUC for ROC Curve
# print(f'ROC AUC: {roc_auc:.2f}')
# Compare the similarity percentage to the threshold
if
similarity_percentage
>=
threshold
:
print
(
"Images are similar. Similarity: {:.2f}
%
"
.
format
(
similarity_percentage
))
else
:
print
(
"Images are dissimilar. Similarity: {:.2f}
%
"
.
format
(
similarity_percentage
))
\ No newline at end of file
Project/Backend/Server_Node/prediction_config/default/original_image.jpeg
0 → 100644
View file @
21309758
15.9 KB
Project/Backend/Server_Node/prediction_config/default/user_input_image.jpeg
0 → 100644
View file @
21309758
15.7 KB
Project/Backend/Server_Node/routes/marksCalculator.routes.js
View file @
21309758
import
express
from
"
express
"
;
import
multer
from
"
multer
"
;
import
{
marksCalculator
}
from
"
../controllers/marksCalculator.controller.js
"
;
import
{
defaultMarksCalculator
,
marksCalculator
}
from
"
../controllers/marksCalculator.controller.js
"
;
// Set up storage for uploaded images
const
storage
=
multer
.
memoryStorage
();
...
...
@@ -9,5 +9,7 @@ const upload = multer({ storage: storage });
const
router
=
express
.
Router
();
router
.
post
(
'
/curriculum/:curriculumIndex/tutorial/:tutorialIndex
'
,
upload
.
single
(
'
image
'
),
marksCalculator
)
router
.
post
(
'
/default
'
,
upload
.
fields
([{
name
:
'
original_image
'
,
maxCount
:
1
},
{
name
:
'
user_input_image
'
,
maxCount
:
1
}]),
defaultMarksCalculator
);
export
default
router
;
\ No newline at end of file
Project/Backend/Server_Node/server.js
View file @
21309758
...
...
@@ -4,12 +4,6 @@ import dotenv from "dotenv";
import
express
from
"
express
"
;
import
mongoose
from
"
mongoose
"
;
import
multer
from
"
multer
"
;
// Set up storage for uploaded images
const
storage
=
multer
.
memoryStorage
();
const
upload
=
multer
({
storage
:
storage
});
//import routes
import
curriculumRoutes
from
"
./routes/curriculum.routes.js
"
;
import
feedbackRoutes
from
"
./routes/feedback.routes.js
"
;
...
...
@@ -26,13 +20,13 @@ const app = express();
const
corsOptions
=
{
origin
:
'
http://localhost:3000
'
,
origin
:
'
http://localhost:3001
'
,
origin
:
'
https://sign-connect-plus.netlify.app
'
origin
:
'
https://sign-connect-plus.netlify.app
'
,
origin
:
'
*
'
,
};
app
.
use
(
bodyParser
.
json
({
limit
:
"
30mb
"
,
extended
:
true
}));
app
.
use
(
bodyParser
.
urlencoded
({
limit
:
"
30mb
"
,
extended
:
true
}));
app
.
use
(
cors
(
corsOptions
));
// app.use(cors());
//end
app
.
get
(
"
/
"
,
(
req
,
res
)
=>
{
...
...
Project/Backend/Server_Node/yarn.lock
View file @
21309758
...
...
@@ -828,7 +828,7 @@ react-mic@^12.4.6:
readable-stream@^2.2.2:
version "2.3.8"
resolved "https://registry.
yarnpkg.com/readable-stream/-/readable-stream-2.3.8.tgz#91125e8042bba1b9887f49345f6277027ce8be9b
"
resolved "https://registry.
npmjs.org/readable-stream/-/readable-stream-2.3.8.tgz
"
integrity sha512-8p0AUk4XODgIewSi0l8Epjs+EVnWiK7NoDIEGU0HhE7+ZyY8D1IMY7odu5lRrFXGg71L15KG8QrPmum45RTtdA==
dependencies:
core-util-is "~1.0.0"
...
...
Project/Backend/Server_Python/app.log
View file @
21309758
This diff is collapsed.
Click to expand it.
Project/Backend/Server_Python/controllers/text_to_sign_language_controller.py
0 → 100644
View file @
21309758
from
datetime
import
datetime
import
requests
from
fastapi
import
APIRouter
,
FastAPI
,
HTTPException
,
Query
,
Request
from
fastapi.responses
import
JSONResponse
from
pymongo.mongo_client
import
MongoClient
# Replace with your MongoDB Atlas credentials
username
=
"admin"
password
=
"JppbU6MZeHfOj7sp"
uri
=
f
"mongodb+srv://{username}:{password}@researchmanagement-appl.vzhn4.mongodb.net/?retryWrites=true&w=majority"
client
=
MongoClient
(
uri
)
db
=
client
[
"test"
]
items_collection
=
db
[
"translated_items"
]
items_collection_log
=
db
[
"translated_items_log"
]
router
=
APIRouter
()
# Your unicode_to_int_mapping dictionary
unicode_to_int_mapping
=
{
"මම"
:
1
,
"හෙට"
:
2
,
"යනවා"
:
3
,
"මං"
:
4
,
"ගුඩ්"
:
5
,
"මෝනිං"
:
6
,
"උඹ"
:
7
,
"ආවේ"
:
8
,
"ඇයි"
:
9
,
}
@
router
.
post
(
"/rest_pyton/get_user_input_text"
)
async
def
get_user_input_text
(
request_data
:
dict
):
user_input_text
=
request_data
.
get
(
"userInputText"
)
if
user_input_text
is
None
:
raise
HTTPException
(
status_code
=
400
,
detail
=
"Invalid JSON data. Missing 'userInputText' field."
)
result
=
convert_text_to_numbers
(
user_input_text
)
# Send translated integer to MongoDB
send_to_mongodb
(
result
)
# Perform any processing you need on the number_array
response
=
{
"message"
:
f
"Received user input text: {user_input_text}"
,
"translated_integers_string"
:
result
}
return
response
def
send_to_mongodb
(
translated_integer_si
):
translated_item_data
=
{
"translated_integer_si"
:
translated_integer_si
,
"timestamp"
:
datetime
.
utcnow
(),
}
# Save the previous record to the log before updating
existing_record
=
items_collection
.
find_one
()
if
existing_record
:
items_collection_log
=
db
[
"translated_items_log"
]
# Exclude the _id field to allow MongoDB to generate a new one
existing_record
.
pop
(
"_id"
,
None
)
items_collection_log
.
insert_one
(
existing_record
)
# Update the existing record or create a new one
result
=
items_collection
.
replace_one
({},
translated_item_data
,
upsert
=
True
)
if
result
.
matched_count
==
0
and
result
.
modified_count
==
0
:
raise
HTTPException
(
status_code
=
500
,
detail
=
"Failed to update or create translated item"
)
def
convert_text_to_numbers
(
user_input_text
):
words
=
user_input_text
.
split
()
numbers
=
[
unicode_to_int_mapping
.
get
(
word
,
-
1
)
for
word
in
words
]
# -1 if word not found
number_string
=
' '
.
join
([
str
(
num
)
for
num
in
numbers
if
num
!=
-
1
])
return
number_string
\ No newline at end of file
Project/Backend/Server_Python/controllers/video_detect_controler.py
View file @
21309758
...
...
@@ -37,7 +37,7 @@ async def upload_video(video: UploadFile = File(...)):
with
open
(
file_location
,
"wb"
)
as
file
:
file
.
write
(
video
.
file
.
read
())
return
{
"text"
:
"
OK2
"
}
return
{
"text"
:
"
Video Upload Successfully
"
}
except
Exception
as
e
:
logger
.
info
(
f
"Failed to upload file. {e}"
)
raise
HTTPException
(
...
...
Project/Backend/Server_Python/controllers/video_to_sign_language_controller.py
View file @
21309758
...
...
@@ -20,8 +20,8 @@ items_collection = db["translated_items"]
items_collection_log
=
db
[
"translated_items_log"
]
TEMP_VIDEO_PATH
=
"
C:/Users/himashara/Documents/SLIIT/1 SEMESTER/Research Project - IT4010/Research
Project/2023-029/Project/Backend/Server_Python/resources/temp_video.mp4"
AUDIO_SAVE_PATH
=
"
C:/Users/himashara/Documents/SLIIT/1 SEMESTER/Research Project - IT4010/Research
Project/2023-029/Project/Backend/Server_Python/resources/audio.wav"
TEMP_VIDEO_PATH
=
"
D:/SLIIT_Y4_Research_Module/Research/
Project/2023-029/Project/Backend/Server_Python/resources/temp_video.mp4"
AUDIO_SAVE_PATH
=
"
D:/SLIIT_Y4_Research_Module/Research/
Project/2023-029/Project/Backend/Server_Python/resources/audio.wav"
router
=
APIRouter
()
logger
=
setup_logger
()
...
...
@@ -68,7 +68,7 @@ async def uploaded_video(file: UploadFile = File(...)):
str
(
unicode_to_int_mapping
.
get
(
word
,
"0"
))
for
word
in
translated_text_si
.
split
()
)
print
(
"Translated Integer (Si):"
,
translated_integer_si
)
print
(
"Translated Integer (Si)
from Video
:"
,
translated_integer_si
)
# Send translated integer to MongoDB
send_to_mongodb
(
translated_integer_si
)
...
...
@@ -84,7 +84,7 @@ async def uploaded_video(file: UploadFile = File(...)):
return
JSONResponse
(
content
=
{
"error"
:
str
(
e
)},
status_code
=
500
)
unicode_to_int_mapping
=
{
"මම"
:
1
,
"හෙට"
:
2
,
"යනවා"
:
3
,
"මං"
:
4
}
unicode_to_int_mapping
=
{
"මම"
:
1
,
"හෙට"
:
2
,
"යනවා"
:
3
,
"මං"
:
4
,
"ගුඩ්"
:
5
,
"මෝනිං"
:
6
,
"උඹ"
:
7
,
"ආවේ"
:
8
,
"ඇයි"
:
9
}
def
translate_text
(
text
,
target_language
):
...
...
@@ -146,6 +146,7 @@ def send_to_mongodb(translated_integer_si):
existing_record
=
items_collection
.
find_one
()
if
existing_record
:
items_collection_log
=
db
[
"translated_items_log"
]
# Exclude the _id field to allow MongoDB to generate a new one
existing_record
.
pop
(
"_id"
,
None
)
items_collection_log
.
insert_one
(
existing_record
)
...
...
Project/Backend/Server_Python/main.py
View file @
21309758
...
...
@@ -4,7 +4,8 @@ from controllers import (
users_controller
,
video_to_sign_language_controller
,
audio_detect_controler
,
video_detect_controler
video_detect_controler
,
text_to_sign_language_controller
)
from
fastapi.responses
import
RedirectResponse
from
fastapi.middleware.cors
import
CORSMiddleware
...
...
@@ -46,6 +47,7 @@ app.include_router(translate_controler.router)
app
.
include_router
(
video_to_sign_language_controller
.
router
)
app
.
include_router
(
audio_detect_controler
.
router
)
app
.
include_router
(
video_detect_controler
.
router
)
app
.
include_router
(
text_to_sign_language_controller
.
router
)
# Add cores middleware
...
...
@@ -54,6 +56,7 @@ origins = [
"http://localhost:8080"
,
"http://localhost:8004"
,
"http://localhost:3000"
,
"http://localhost:3001"
,
"http://127.0.0.1:8000"
,
"127.0.0.1:55553"
,
"http://localhost:52823"
,
...
...
@@ -61,7 +64,8 @@ origins = [
"http://localhost:51373"
,
"http://localhost:51489"
,
"https://v6p9d9t4.ssl.hwcdn.net"
,
"https://64f66d39fdef493229b2ddd9--lambent-unicorn-97396a.netlify.app"
# "https://64f66d39fdef493229b2ddd9--lambent-unicorn-97396a.netlify.app",
"https://64f7cfd336356b18eb42de2b--lambent-unicorn-97396a.netlify.app"
]
app
.
add_middleware
(
...
...
Project/Backend/Server_Python/node_modules/.package-lock.json
0 → 100644
View file @
21309758
{
"name"
:
"Server_Python"
,
"lockfileVersion"
:
2
,
"requires"
:
true
,
"packages"
:
{}
}
Project/Backend/Server_Python/package-lock.json
0 → 100644
View file @
21309758
{
"name"
:
"Server_Python"
,
"lockfileVersion"
:
2
,
"requires"
:
true
,
"packages"
:
{}
}
Project/Backend/Server_Python/services/video_detection_service.py
View file @
21309758
...
...
@@ -24,6 +24,7 @@ emotion_model.load_weights("../ML_Models/Emotion_Detection_Model/emotion_model.h
class
EmotionPredictionService
:
def
__init__
(
self
,
model
):
self
.
model
=
model
self
.
current_emotion
=
None
def
predict_emotion_detection_video
(
video_request
:
UploadFile
)
->
Dict
[
str
,
str
]:
try
:
...
...
@@ -85,7 +86,26 @@ class EmotionPredictionService:
break
emotions
=
predict_emotion_from_frame
(
frame
)
predicted_emotions
.
extend
(
emotions
)
if
emotions
:
new_emotion
=
emotions
[
0
]
# Assuming you only process one face at a time
cv2
.
putText
(
frame
,
f
"Emotion: {new_emotion}"
,
(
10
,
30
),
cv2
.
FONT_HERSHEY_SIMPLEX
,
1
,
(
0
,
0
,
255
),
2
)
if
new_emotion
!=
self
.
current_emotion
:
self
.
current_emotion
=
new_emotion
predicted_emotions
.
append
(
new_emotion
)
# Display the frame with emotion prediction
cv2
.
imshow
(
'Emotion Detection'
,
frame
)
if
cv2
.
waitKey
(
1
)
&
0xFF
==
ord
(
'q'
):
break
# while True:
# ret, frame = cap.read()
# if not ret:
# break
# emotions = predict_emotion_from_frame(frame)
# predicted_emotions.extend(emotions)
cap
.
release
()
os
.
remove
(
video_location
)
...
...
Project/Frontend/SignConnectPlus/src/menu-items/application.tsx
View file @
21309758
...
...
@@ -17,6 +17,7 @@ import {
TranslationOutlined
,
UserOutlined
,
VideoCameraOutlined
,
HighlightOutlined
,
}
from
'
@ant-design/icons
'
;
// type
...
...
@@ -37,7 +38,8 @@ const icons = {
FastForwardOutlined
,
RedditOutlined
,
AudioOutlined
,
VideoCameraOutlined
VideoCameraOutlined
,
HighlightOutlined
};
// ==============================|| MENU ITEMS - SUPPORT ||============================== //
...
...
@@ -93,6 +95,14 @@ const application: NavItemType = {
title
:
<
FormattedMessage
id=
"video-translate"
/>,
type
:
'
item
'
,
url
:
'
/video-to-sign-language/VideoTranslate
'
,
// icon: icons.VideoCameraOutlined,
},
{
id
:
'
text-translate
'
,
title
:
<
FormattedMessage
id=
"text-translate"
/>,
type
:
'
item
'
,
url
:
'
/video-to-sign-language/text-translation
'
,
// icon: icons.HighlightOutlined,
}
]
},
...
...
Project/Frontend/SignConnectPlus/src/pages/emotion-detection/emotion-audio-detection/list/list.tsx
View file @
21309758
...
...
@@ -6,11 +6,37 @@ import Button from '@mui/material/Button';
import
UploadOutlined
from
'
@ant-design/icons/lib/icons/UploadOutlined
'
;
import
AudioOutlined
from
'
@ant-design/icons/lib/icons/AudioOutlined
'
;
import
{
Link
}
from
'
react-router-dom
'
;
import
{
Box
,
Stack
,
}
from
'
@mui/material
'
;
import
{
APP_DEFAULT_PATH
}
from
'
config
'
;
import
construction
from
'
assets/images/maintenance/under-construction.svg
'
;
import
{
CardContent
,
IconButton
,
InputAdornment
,
Paper
,
TextField
,
Typography
}
from
'
@mui/material
'
;
import
CopyOutlined
from
'
@ant-design/icons/lib/icons/CopyOutlined
'
;
import
AudioEmotionDetectService
from
'
../../../../services/AudioEmotionDetection.js
'
;
import
{
MuiFileInput
}
from
'
mui-file-input
'
;
import
{
useSnackbar
}
from
'
notistack
'
;
const
List
=
()
=>
{
const
[
audioBlob
,
setAudioBlob
]
=
useState
<
Blob
|
undefined
>
(
undefined
);
const
[
mediaRecorder
,
setMediaRecorder
]
=
useState
<
MediaRecorder
|
undefined
>
(
undefined
);
const
[
isRecording
,
setIsRecording
]
=
useState
<
boolean
>
(
false
);
const
[
audioUrl
,
setAudioUrl
]
=
useState
<
string
|
undefined
>
(
undefined
);
const
[
value
,
setValue
]
=
useState
(
''
);
const
[
file
,
setFile
]
=
useState
<
File
|
string
|
null
>
(
null
);
const
[
loading
,
setLoading
]
=
useState
(
false
);
const
[
isUploadFile
,
setIsUploadFile
]
=
useState
<
boolean
|
string
|
null
>
(
true
);
const
handleDropSingleFile
=
(
files
:
any
)
=>
{
if
(
files
)
{
setFile
(
Object
.
assign
(
files
,
{
preview
:
URL
.
createObjectURL
(
files
)
})
);
setAudioUrl
(
URL
.
createObjectURL
(
files
));
}
};
const
handleRecordStart
=
async
()
=>
{
// Clear the uploaded audio state when recording starts
...
...
@@ -54,6 +80,53 @@ const List = () => {
// Handle case where uploaded file is not an audio file
}
};
const
{
enqueueSnackbar
}
=
useSnackbar
();
const
handleChange
=
(
event
:
React
.
ChangeEvent
<
HTMLTextAreaElement
>
)
=>
{
setValue
(
event
.
target
.
value
);
};
const
onCopy
=
(
text
:
string
)
=>
{
if
(
text
)
{
navigator
.
clipboard
.
writeText
(
text
);
enqueueSnackbar
(
'
Copied!
'
,
{
variant
:
'
success
'
});
}
};
// Audio Upload
const
predictEmotionFromAudio
=
async
()
=>
{
console
.
log
(
"
OK75
"
)
console
.
log
(
file
);
if
(
file
)
{
setLoading
(
true
);
const
formData
=
new
FormData
();
//@ts-ignore
formData
.
append
(
'
audio_request
'
,
file
,
file
.
name
);
try
{
const
response
=
await
AudioEmotionDetectService
.
predictEmotionAudio
(
formData
);
if
(
response
.
status
==
200
)
{
console
.
log
(
response
.
data
);
setValue
(
response
.
data
.
predicted_emotion
);
}
else
{
enqueueSnackbar
(
'
Something went Wrong!
'
,
{
variant
:
'
error
'
});
}
setLoading
(
false
);
}
catch
(
error
)
{
console
.
log
(
error
);
setLoading
(
false
);
enqueueSnackbar
(
'
Something went Wrong!
'
,
{
variant
:
'
error
'
});
}
}
else
{
enqueueSnackbar
(
'
Please select a file.
'
,
{
variant
:
'
warning
'
});
}
};
const
checkEmotionUpload
=
()
=>
{
if
(
isUploadFile
)
{
return
'
contained
'
;
}
else
{
return
'
outlined
'
;
}
};
return
(
<
MainCard
content=
{
false
}
>
...
...
@@ -65,17 +138,20 @@ const List = () => {
<
div
style=
{
{
textAlign
:
'
center
'
}
}
>
<
input
type=
"file"
accept=
"audio/*"
onChange=
{
handleUpload
}
style=
{
{
display
:
'
none
'
}
}
id=
"audio-upload"
/>
<
label
htmlFor=
"audio-upload"
>
<
Button
variant=
"contained"
// variant="contained"
variant=
{
checkEmotionUpload
()
}
color=
"primary"
component=
"span"
startIcon=
{
<
UploadOutlined
/>
}
onClick=
{
()
=>
{
setIsUploadFile
(
true
);
}
}
>
Upload
</
Button
>
...
...
@@ -88,6 +164,49 @@ const List = () => {
>
{
isRecording
?
'
Stop Recording
'
:
'
Record
'
}
</
Button
>
<
Button
variant=
"contained"
disabled=
{
loading
}
onClick=
{
()
=>
{
predictEmotionFromAudio
();
}
}
>
Prediction
</
Button
>
<
div
>
<
Typography
variant=
"overline"
sx=
{
{
color
:
'
text.secondary
'
}
}
>
Predict Emotion
</
Typography
>
<
TextField
fullWidth
value=
{
value
}
onChange=
{
handleChange
}
InputProps=
{
{
endAdornment
:
(
<
InputAdornment
position=
"end"
>
<
IconButton
onClick=
{
()
=>
onCopy
(
value
)
}
>
<
CopyOutlined
/>
</
IconButton
>
</
InputAdornment
>
)
}
}
/>
</
div
>
<
CardContent
>
{
/* ! Important */
}
{
/* @ts-ignore */
}
<
MuiFileInput
value=
{
file
}
onChange=
{
handleDropSingleFile
}
inputProps=
{
{
accept
:
'
audio/*
'
}
}
/>
<
Paper
style=
{
{
padding
:
'
20px
'
,
marginTop
:
'
15px
'
}
}
>
<
Typography
variant=
"h5"
align=
"center"
gutterBottom
>
Preview
</
Typography
>
<
div
style=
{
{
marginTop
:
'
20px
'
,
textAlign
:
'
center
'
}
}
>
{
file
?
<
video
src=
{
audioUrl
}
width=
"400"
controls
/>
:
<
p
>
No Audio Selected ...
</
p
>
}
</
div
>
</
Paper
>
</
CardContent
>
{
audioBlob
&&
(
<
audio
controls
>
<
source
src=
{
URL
.
createObjectURL
(
audioBlob
)
}
type=
"audio/wav"
/>
...
...
@@ -106,8 +225,26 @@ const List = () => {
<
Grid
item
xs=
{
12
}
md=
{
6
}
>
<
h2
>
3D Avatar
</
h2
>
<
MainCard
>
{
/* Content of the second card */
}
{
/* You can put your 3D avatar components here */
}
<
Grid
container
spacing=
{
4
}
direction=
"column"
alignItems=
"center"
justifyContent=
"center"
sx=
{
{
minHeight
:
'
100vh
'
,
py
:
2
}
}
>
<
Grid
item
xs=
{
12
}
>
<
Box
sx=
{
{
width
:
{
xs
:
300
,
sm
:
480
}
}
}
>
<
img
src=
{
construction
}
alt=
"mantis"
style=
{
{
width
:
'
100%
'
,
height
:
'
auto
'
}
}
/>
</
Box
>
</
Grid
>
<
Grid
item
xs=
{
12
}
>
<
Stack
spacing=
{
2
}
justifyContent=
"center"
alignItems=
"center"
>
<
Typography
align=
"center"
variant=
"h1"
>
Under Construction
</
Typography
>
<
Typography
color=
"textSecondary"
align=
"center"
sx=
{
{
width
:
'
85%
'
}
}
>
Hey! Please check out this site later. We are doing some maintenance on it right now.
</
Typography
>
<
Button
component=
{
Link
}
to=
{
APP_DEFAULT_PATH
}
variant=
"contained"
>
Back To Home
</
Button
>
</
Stack
>
</
Grid
>
</
Grid
>
</
MainCard
>
</
Grid
>
</
Grid
>
...
...
Project/Frontend/SignConnectPlus/src/pages/emotion-detection/emotion-video-detection/list/list.tsx
View file @
21309758
This diff is collapsed.
Click to expand it.
Project/Frontend/SignConnectPlus/src/pages/learning-management/learning-curriculums-subscribed/tutorial/tutorial.tsx
View file @
21309758
...
...
@@ -398,7 +398,10 @@ const Tutorial = () => {
</
span
>
</
Typography
>
<
Typography
variant=
"h4"
sx=
{
{
pt
:
3
,
pb
:
1
,
zIndex
:
1
}
}
>
{
(
data
?.
tutorialMarkUser
!
/ data
?
.tutorialMarks!
)
* 100
}
% Completed
{
((
data
?.
tutorialMarkUser
!
/ data
?
.tutorialMarks!
)
* 100
)
.toLocaleString
(
undefined, {
minimumFractionDigits
:
2
,
maximumFractionDigits
:
2
,
})
}
% Completed
</
Typography
>
<
Box
sx=
{
{
maxWidth
:
'
60%
'
}
}
>
<
LinearProgress
variant=
"determinate"
color=
"success"
value=
{
(
data
?.
tutorialMarkUser
!
/ data
?
.tutorialMarks!
)
* 100
}
/>
...
...
Project/Frontend/SignConnectPlus/src/pages/services/SignLanguageToText.js
deleted
100644 → 0
View file @
20611974
import
axios
from
'
axios
'
;
class
SignLanguageToTextService
{
predictSignLanguageVideo
(
speed
,
data
)
{
return
axios
.
post
(
`http://127.0.0.1:8000/predict-sign-language/video/speed_levels?speed=
${
speed
}
`
,
data
);
}
}
export
default
new
SignLanguageToTextService
();
Project/Frontend/SignConnectPlus/src/pages/video-to-sign-language/TextTranslate/TextTranslate.tsx
0 → 100644
View file @
21309758
// material-ui
import
{
Button
,
Divider
,
Grid
,
InputLabel
,
Stack
,
TextField
}
from
'
@mui/material
'
;
import
{
LocalizationProvider
}
from
'
@mui/x-date-pickers
'
;
import
{
AdapterDateFns
}
from
'
@mui/x-date-pickers/AdapterDateFns
'
;
import
axios
from
'
axios
'
;
import
MainCard
from
'
components/MainCard
'
;
// third-party
import
{
Form
,
FormikProvider
,
useFormik
}
from
'
formik
'
;
import
{
useState
}
from
'
react
'
;
import
*
as
Yup
from
'
yup
'
;
// project imports
// assets
// types
// ==============================|| List ||============================== //
const
TextTranslate
=
()
=>
{
const
[
showUnityWebGL
,
setShowUnityWebGL
]
=
useState
(
false
);
const
FormSchema
=
Yup
.
object
().
shape
({
userInputText
:
Yup
.
string
()
.
required
(
'
Field is required
'
)
.
test
(
'
is-sinhala
'
,
'
Input must be in Sinhala
'
,
(
value
)
=>
{
// You can use a regular expression or any custom logic to validate Sinhala text.
// Here's a basic example using a regular expression for Sinhala characters.
const
sinhalaRegex
=
/^
[\u
0D80-
\u
0DFF
\s]
+$/
;
// Range for Sinhala Unicode characters
if
(
!
value
)
{
// If the field is empty, it's valid as it's already being checked by 'required'
return
true
;
}
return
sinhalaRegex
.
test
(
value
);
})
.
max
(
255
,
'
Input must be at most 255 characters long
'
),
});
const
formik
=
useFormik
({
initialValues
:
{
userInputText
:
""
,
},
validationSchema
:
FormSchema
,
enableReinitialize
:
true
,
onSubmit
:
async
(
values
,
{
setSubmitting
,
resetForm
})
=>
{
try
{
// API Call Here
const
response
=
await
axios
.
post
(
"
http://127.0.0.1:8000/rest_pyton/get_user_input_text
"
,
{
userInputText
:
values
.
userInputText
,
});
// Check if the request was successful
if
(
response
.
status
===
200
)
{
console
.
log
(
"
Success:
"
,
response
.
data
);
setShowUnityWebGL
(
true
)
}
else
{
console
.
error
(
"
Request failed with status code:
"
,
response
.
status
);
}
resetForm
()
setSubmitting
(
false
);
}
catch
(
error
)
{
console
.
error
(
error
);
}
}
});
const
{
errors
,
touched
,
handleSubmit
,
isSubmitting
,
getFieldProps
}
=
formik
;
return
(
<>
<
FormikProvider
value=
{
formik
}
>
<
LocalizationProvider
dateAdapter=
{
AdapterDateFns
}
>
<
Form
autoComplete=
"off"
noValidate
onSubmit=
{
handleSubmit
}
>
<
MainCard
>
<
Grid
container
spacing=
{
3
}
>
<
Grid
item
xs=
{
4
}
md=
{
4
}
>
<
Grid
container
spacing=
{
3
}
>
<
Grid
item
xs=
{
12
}
>
<
Stack
spacing=
{
1.25
}
>
<
InputLabel
htmlFor=
"userInputText"
>
Enter Text to Translate
</
InputLabel
>
<
TextField
fullWidth
id=
"userInputText"
placeholder=
"Enter Text Name"
{
...
getFieldProps
('
userInputText
')}
error=
{
Boolean
(
touched
.
userInputText
&&
errors
.
userInputText
)
}
helperText=
{
touched
.
userInputText
&&
errors
.
userInputText
}
/>
</
Stack
>
</
Grid
>
<
Grid
item
xs=
{
12
}
>
<
Divider
/>
</
Grid
>
<
Grid
item
xs=
{
12
}
>
<
Grid
container
justifyContent=
"space-between"
alignItems=
"center"
>
<
Grid
item
>
</
Grid
>
<
Grid
item
>
<
Stack
direction=
"row"
spacing=
{
2
}
alignItems=
"center"
>
<
Button
color=
"error"
onClick=
{
()
=>
{
setShowUnityWebGL
(
false
)
}
}
>
Cancel
</
Button
>
<
Button
type=
"submit"
variant=
"contained"
disabled=
{
isSubmitting
}
>
TRANSLATE
</
Button
>
</
Stack
>
</
Grid
>
</
Grid
>
</
Grid
>
</
Grid
>
</
Grid
>
<
Grid
item
xs=
{
8
}
md=
{
8
}
>
{
showUnityWebGL
?
<
iframe
// src="https://64f66d39fdef493229b2ddd9--lambent-unicorn-97396a.netlify.app/"
src=
"https://64f7cfd336356b18eb42de2b--lambent-unicorn-97396a.netlify.app/"
width=
"100%"
height=
"700px"
// Adjust the height as needed
title=
"Unity WebGL"
style=
{
{
border
:
'
none
'
,
overflow
:
'
hidden
'
}
}
></
iframe
>
:
<>
3D model Rendered Here...
</>
}
</
Grid
>
</
Grid
>
</
MainCard
>
</
Form
>
</
LocalizationProvider
>
</
FormikProvider
>
</>
);
};
export
default
TextTranslate
;
\ No newline at end of file
Project/Frontend/SignConnectPlus/src/pages/video-to-sign-language/VideoTranslate/VideoTranslate.tsx
View file @
21309758
This diff is collapsed.
Click to expand it.
Project/Frontend/SignConnectPlus/src/pages/video-to-sign-language/VideoTranslate/VideoTranslate.tsx.bkp
View file @
21309758
This diff is collapsed.
Click to expand it.
Project/Frontend/SignConnectPlus/src/routes/MainRoutes.tsx
View file @
21309758
...
...
@@ -49,6 +49,8 @@ const TutorialManagementList = Loadable(lazy(() => import('pages/parameter/tutor
// render - Video to Sign Language page
const
VideoTranslation
=
Loadable
(
lazy
(()
=>
import
(
'
pages/video-to-sign-language/VideoTranslate/VideoTranslate
'
)));
// render - Text to Sign Language page
const
TextTranslation
=
Loadable
(
lazy
(()
=>
import
(
'
pages/video-to-sign-language/TextTranslate/TextTranslate
'
)));
// render - audio-detection page
const
AudioDetection
=
Loadable
(
lazy
(()
=>
import
(
'
pages/emotion-detection/emotion-audio-detection/list/list
'
)));
...
...
@@ -128,9 +130,14 @@ const MainRoutes = {
{
path
:
'
VideoTranslate
'
,
element
:
<
VideoTranslation
/>
},
{
path
:
'
text-translation
'
,
element
:
<
TextTranslation
/>
}
]
},
{
path
:
'
learning-management
'
,
children
:
[
...
...
Project/Frontend/SignConnectPlus/src/sections/learning-management/learning-curriculums-subscribed/CurriculumSection.tsx
View file @
21309758
...
...
@@ -53,7 +53,10 @@ const CurriculumSection = ({ curriculum, curriculumIndex }: { curriculum: curric
Your learning capacity is 80% as daily analytics
</
Typography
>
<
Typography
variant=
"h4"
color=
"white"
sx=
{
{
pt
:
8
,
pb
:
1
,
zIndex
:
1
}
}
>
{
(
curriculum
?.
curriculumMarkUser
!
/ curriculum
?
.curriculumMark!
)
* 100
}
% Completed
{
((
curriculum
?.
curriculumMarkUser
!
/ curriculum
?
.curriculumMark!
)
* 100
)
.toLocaleString
(
undefined, {
minimumFractionDigits
:
2
,
maximumFractionDigits
:
2
,
})
}
% Completed
</
Typography
>
<
Box
sx=
{
{
maxWidth
:
'
60%
'
}
}
>
<
LinearProgress
variant=
"determinate"
color=
"success"
value=
{
(
curriculum
?.
curriculumMarkUser
!
/ curriculum
?
.curriculumMark!
)
* 100
}
/>
...
...
Project/Frontend/SignConnectPlus/src/services/AudioEmotionDetection.js
0 → 100644
View file @
21309758
import
axios
from
'
axios
'
;
class
AudioEmotionDetectService
{
predictEmotionAudio
(
data
)
{
return
axios
.
post
(
`http://127.0.0.1:8000/predict_emotion/audio/`
,
data
);
}
}
export
default
new
AudioEmotionDetectService
();
\ No newline at end of file
Project/Frontend/SignConnectPlus/src/services/VideoEmotionDetection.js
0 → 100644
View file @
21309758
import
axios
from
'
axios
'
;
class
VideoEmotionDetectService
{
predictEmotionVideo
(
data
)
{
return
axios
.
post
(
`http://127.0.0.1:8000/predict_emotion/video/`
,
data
);
}
}
export
default
new
VideoEmotionDetectService
();
\ No newline at end of file
Project/Frontend/SignConnectPlus/src/
pages/
services/VideoToSignLanguage.js
→
Project/Frontend/SignConnectPlus/src/services/VideoToSignLanguage.js
View file @
21309758
...
...
@@ -3,9 +3,7 @@ import axios from 'axios';
class
VideoToSignLanguage
{
videoTranslation
(
data
)
{
return
axios
.
post
(
// @ts-ignore
`http://127.0.0.1:8000/translated_items/`
,
data
`http://127.0.0.1:8000/translated_items/`
,
data
);
}
}
...
...
Project/Frontend/SignConnectPlus/src/store/reducers/marksCalculator.ts
View file @
21309758
...
...
@@ -41,11 +41,17 @@ const slice = createSlice({
state
.
isLoading
=
false
;
},
// POST
USER
// POST
marksCalculatorSuccess
marksCalculatorSuccess
(
state
,
action
)
{
state
.
marksCalculator
=
action
.
payload
.
result
;
state
.
success
=
"
Marks Calculated Successfully.
"
},
// POST default marksCalculatorSuccess
defaultMarksCalculatorSuccess
(
state
,
action
)
{
state
.
marksCalculator
=
action
.
payload
.
result
;
state
.
success
=
"
Marks Calculated Successfully.
"
},
}
});
...
...
@@ -77,7 +83,6 @@ export function CalculateMarks(curriculumIndex: number, tutorialIndex: number, i
dispatch
(
slice
.
actions
.
startLoading
());
try
{
// Construct the request body as needed (e.g., for formData)
const
formData
=
new
FormData
();
formData
.
append
(
'
image
'
,
imageData
);
formData
.
append
(
'
class
'
,
targetClass
);
...
...
@@ -91,3 +96,29 @@ export function CalculateMarks(curriculumIndex: number, tutorialIndex: number, i
}
};
};
/**
* POST Default Marks Calculator
* @param original_image
* @param user_input_image
* @returns
*/
export
function
DefaultCalculateMarks
(
original_image
:
any
,
user_input_image
:
any
)
{
return
async
()
=>
{
dispatch
(
slice
.
actions
.
startLoading
());
try
{
const
formData
=
new
FormData
();
formData
.
append
(
'
original_image
'
,
original_image
);
formData
.
append
(
'
user_input_image
'
,
user_input_image
);
const
response
=
await
axiosServices
.
post
(
`/rest_node/marks-calculator/default`
,
formData
);
dispatch
(
slice
.
actions
.
marksCalculatorSuccess
(
response
.
data
));
}
catch
(
error
)
{
dispatch
(
slice
.
actions
.
hasError
(
error
));
}
finally
{
dispatch
(
slice
.
actions
.
finishLoading
());
}
};
};
Project/Frontend/SignConnectPlus/src/utils/locales/en.json
View file @
21309758
...
...
@@ -168,5 +168,6 @@
"learning-dashboard"
:
"Dashboard"
,
"learning-curriculums-subscribed-tutorial"
:
"Tutorial"
,
"video-to-sign-language"
:
"Sign Language Translate"
,
"video-translate"
:
"Video Translator"
"video-translate"
:
"Video Translation"
,
"text-translate"
:
"Text Translation"
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment