Commit 6939f1c1 authored by Ashen Udayanga Sudugala's avatar Ashen Udayanga Sudugala

Merge branch 'Sakindu' into 'master'

Sakindu

See merge request !9
parents 9a6723f2 2e437b26
This diff is collapsed.
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 22 19:14:10 2020
@author: Sakindu Udagedara
"""
#Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
#Importing tha dataset
dataset = pd.read_csv('Sample.csv')
X = dataset.iloc[:,[1,3]].values
Y = dataset.iloc[:,5].values
#taking care of missing data
#from sklearn.preprocessing import Imputor
#imputor = Imputor (missing_values = 'NaN', strategy = 'mean' , axis = 0)
#imputor.fix(X[:,])
#encoding catagarical data
from sklearn.preprocessing import LabelEncoder
lebekencoder_X = LabelEncoder()
#X[:, 0] = lebekencoder_X.fit_transform(X[:, 0])
#X[:, 2] = lebekencoder_X.fit_transform(X[:, 2])
lebekencoder_Y = LabelEncoder()
Y = lebekencoder_Y.fit_transform(Y)
#spliting data into tarin set and test set
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.3, random_state = 0)
#feature scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.fit_transform(X_test)
# Fiting SVM to the Traing set
from sklearn.svm import SVC
classifier = SVC(kernel = 'linear', random_state = 0)
classifier.fit(X_train, Y_train)
# Predicting the Test set results
y_pred = classifier.predict(X_test)
#makeing the confusion matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(Y_test, y_pred)
#Visualizing the Training set results
from matplotlib.colors import ListedColormap
X_set, Y_set = X_train, Y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:,0].min() - 1, stop = X_set[:,0].max() + 1, step = 0.01),
np.arange(start = X_set[:,1].min() - 1, stop = X_set[:,1].max() + 1, step = 0.01))
plt.contour(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(),X2.max())
plt.ylim(X2.min(),X1.max())
for i,j in enumerate(np.unique(Y_set)):
plt.scatter(X_set[Y_set == j, 0], X_set[Y_set == j, 1],
c = ListedColormap(('red','green'))(i),label = j)
plt.title('SVM (Training set)' )
plt.xlabel('Source Port')
plt.ylabel('Destination Port')
plt.legend()
plt.show()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment