Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
2
2020-092
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
2020 - 092
2020-092
Commits
c575d1ef
Commit
c575d1ef
authored
Nov 02, 2020
by
U C S Bandara
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
NTP Model code
parent
65af3e02
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
91 additions
and
0 deletions
+91
-0
NTP Amplification Attack/ntpModel.py
NTP Amplification Attack/ntpModel.py
+91
-0
No files found.
NTP Amplification Attack/ntpModel.py
0 → 100644
View file @
c575d1ef
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 22 19:14:10 2020
@author: Sakindu Udagedara
"""
#Importing the libraries
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
pandas
as
pd
#Importing tha dataset
dataset
=
pd
.
read_csv
(
'Sample.csv'
)
X
=
dataset
.
iloc
[:,[
1
,
3
]]
.
values
Y
=
dataset
.
iloc
[:,
5
]
.
values
#taking care of missing data
#from sklearn.preprocessing import Imputor
#imputor = Imputor (missing_values = 'NaN', strategy = 'mean' , axis = 0)
#imputor.fix(X[:,])
#encoding catagarical data
from
sklearn.preprocessing
import
LabelEncoder
lebekencoder_X
=
LabelEncoder
()
#X[:, 0] = lebekencoder_X.fit_transform(X[:, 0])
#X[:, 2] = lebekencoder_X.fit_transform(X[:, 2])
lebekencoder_Y
=
LabelEncoder
()
Y
=
lebekencoder_Y
.
fit_transform
(
Y
)
#spliting data into tarin set and test set
from
sklearn.model_selection
import
train_test_split
X_train
,
X_test
,
Y_train
,
Y_test
=
train_test_split
(
X
,
Y
,
test_size
=
0.3
,
random_state
=
0
)
#feature scaling
from
sklearn.preprocessing
import
StandardScaler
sc_X
=
StandardScaler
()
X_train
=
sc_X
.
fit_transform
(
X_train
)
X_test
=
sc_X
.
fit_transform
(
X_test
)
# Fiting SVM to the Traing set
from
sklearn.svm
import
SVC
classifier
=
SVC
(
kernel
=
'linear'
,
random_state
=
0
)
classifier
.
fit
(
X_train
,
Y_train
)
# Predicting the Test set results
y_pred
=
classifier
.
predict
(
X_test
)
#makeing the confusion matrix
from
sklearn.metrics
import
confusion_matrix
cm
=
confusion_matrix
(
Y_test
,
y_pred
)
#Visualizing the Training set results
from
matplotlib.colors
import
ListedColormap
X_set
,
Y_set
=
X_train
,
Y_train
X1
,
X2
=
np
.
meshgrid
(
np
.
arange
(
start
=
X_set
[:,
0
]
.
min
()
-
1
,
stop
=
X_set
[:,
0
]
.
max
()
+
1
,
step
=
0.01
),
np
.
arange
(
start
=
X_set
[:,
1
]
.
min
()
-
1
,
stop
=
X_set
[:,
1
]
.
max
()
+
1
,
step
=
0.01
))
plt
.
contour
(
X1
,
X2
,
classifier
.
predict
(
np
.
array
([
X1
.
ravel
(),
X2
.
ravel
()])
.
T
)
.
reshape
(
X1
.
shape
),
alpha
=
0.75
,
cmap
=
ListedColormap
((
'red'
,
'green'
)))
plt
.
xlim
(
X1
.
min
(),
X2
.
max
())
plt
.
ylim
(
X2
.
min
(),
X1
.
max
())
for
i
,
j
in
enumerate
(
np
.
unique
(
Y_set
)):
plt
.
scatter
(
X_set
[
Y_set
==
j
,
0
],
X_set
[
Y_set
==
j
,
1
],
c
=
ListedColormap
((
'red'
,
'green'
))(
i
),
label
=
j
)
plt
.
title
(
'SVM (Training set)'
)
plt
.
xlabel
(
'Source Port'
)
plt
.
ylabel
(
'Destination Port'
)
plt
.
legend
()
plt
.
show
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment