Commit e27e7922 authored by Haritha Chanuka's avatar Haritha Chanuka

Replace IT17106702.py

parent 720c6e7b
......@@ -9,26 +9,12 @@ dataset = pd.read_csv("/Users/harithachanuka/Documents/SLIIT/Research/Harry/Wanh
X = dataset.iloc[:, [1,3]].values
y = dataset.iloc[:, 5].values
# datasetnew = pd.read_csv("/Users/harithachanuka/Documents/SLIIT/Research/Implementation/new.csv", encoding='latin-1')
# Xnw = datasetnew.iloc[:, :5].values
#Encoding categorical data-ForX
# Encoding categorical data-ForX
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.compose import ColumnTransformer
labelencoder_X_S = LabelEncoder()
X[:, 0] = labelencoder_X_S.fit_transform(X[:, 0])
#labelencoder_X_D = LabelEncoder()
# X[:, 2] = labelencoder_X_D.fit_transform(X[:, 2])
labelencoder_X_P = LabelEncoder()
X[:, 1] = labelencoder_X_P.fit_transform(X[:, 1])
# ct = ColumnTransformer([("Source", OneHotEncoder(), [1])], remainder = 'passthrough')
# X = ct.fit_transform(X).toarray()
# ct2 = ColumnTransformer([("Destination", OneHotEncoder(), [72])], remainder = 'passthrough')
# X = ct2.fit_transform(X)
# ct3 = ColumnTransformer([("Protocol", OneHotEncoder(), [118])], remainder = 'passthrough')
# X = ct3.fit_transform(X)
labelencoder_y = LabelEncoder()
y = labelencoder_y.fit_transform(y)
......@@ -36,10 +22,7 @@ y = labelencoder_y.fit_transform(y)
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
# print(X_train)
# print(X_test)
# print(y_train)
# print(X_train)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
......@@ -55,8 +38,6 @@ classifier.fit(X_train, y_train)
# Predicting the Test set results
y_pred = classifier.predict(X_test)
# Create confusion metrics to check the performance of algorithm
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
#
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment