Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
CHILD INTELLIGENT ASSESSMENT TOOL
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
2020-046
CHILD INTELLIGENT ASSESSMENT TOOL
Commits
246f0ea4
Commit
246f0ea4
authored
Oct 19, 2020
by
MithilaGunasinghe
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
train the model using training dataset
parent
3d9f364e
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
79 additions
and
0 deletions
+79
-0
CNNmodel/cnn.py
CNNmodel/cnn.py
+79
-0
No files found.
CNNmodel/cnn.py
0 → 100644
View file @
246f0ea4
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Author : Gunasinghe M.D.
IT NUM : IT17043342
"""
# CNN classifier
# Building architecture of our CNN classifier
import
keras
from
keras.models
import
Sequential
from
keras.layers
import
Convolution2D
from
keras.layers
import
MaxPooling2D
from
keras.layers
import
Flatten
from
keras.layers
import
Dense
# Initialising the CNN
classifier
=
Sequential
()
# Step - 1 Convolution
classifier
.
add
(
Convolution2D
(
16
,
3
,
3
,
input_shape
=
(
28
,
28
,
1
),
activation
=
'relu'
))
# Step - 2 Pooling
classifier
.
add
(
MaxPooling2D
(
pool_size
=
(
2
,
2
)))
classifier
.
add
(
Convolution2D
(
32
,
3
,
3
,
activation
=
'relu'
))
classifier
.
add
(
MaxPooling2D
(
pool_size
=
(
2
,
2
)))
# Step - 3 Flattening
classifier
.
add
(
Flatten
())
# Step - 4 Full connection -> First layer input layer then hidden layer
# and last softmax layer
classifier
.
add
(
Dense
(
56
,
activation
=
'relu'
,
kernel_initializer
=
'uniform'
))
classifier
.
add
(
Dense
(
3
,
activation
=
'softmax'
,
kernel_initializer
=
'uniform'
))
# Compiling the CNN
classifier
.
compile
(
optimizer
=
'adam'
,
loss
=
'categorical_crossentropy'
,
metrics
=
[
'accuracy'
])
# Image Preprocessing
from
keras.preprocessing.image
import
ImageDataGenerator
train_datagen
=
ImageDataGenerator
(
rescale
=
1.
/
255
,
shear_range
=
0.2
,
zoom_range
=
0.2
,
horizontal_flip
=
True
)
test_datagen
=
ImageDataGenerator
(
rescale
=
1.
/
255
)
training_set
=
train_datagen
.
flow_from_directory
(
'shapes/train'
,
target_size
=
(
28
,
28
),
batch_size
=
1
,
color_mode
=
"grayscale"
,
class_mode
=
'categorical'
)
#X_images, y_labels = training_set.filenames, training_set.classes
test_set
=
test_datagen
.
flow_from_directory
(
'shapes/test'
,
target_size
=
(
28
,
28
),
batch_size
=
1
,
color_mode
=
"grayscale"
,
class_mode
=
'categorical'
)
# Logging the training of models
from
keras.callbacks
import
CSVLogger
,
EarlyStopping
csv_logger
=
CSVLogger
(
'log.csv'
,
append
=
True
,
separator
=
';'
)
early_stopping_monitor
=
EarlyStopping
(
patience
=
5
)
steps_per_epoch
=
len
(
training_set
.
filenames
)
# 300
validation_steps
=
len
(
test_set
.
filenames
)
# 90
classifier
.
summary
()
model_info
=
classifier
.
fit_generator
(
training_set
,
steps_per_epoch
=
steps_per_epoch
,
epochs
=
25
,
validation_data
=
test_set
,
validation_steps
=
validation_steps
,
callbacks
=
[
csv_logger
,
early_stopping_monitor
])
classifier
.
save
(
"shapes_classification.h5"
)
# plot model history after each epoch
from
visulization
import
plot_model_history
plot_model_history
(
model_info
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment