Commit aaa4ba43 authored by Dilitha A.G.A.D.'s avatar Dilitha A.G.A.D.

add person tracking and dwell time calculation

parent 27e939a1
import cv2
import datetime
import imutils
import numpy as np
from centroidtracker import CentroidTracker
protopath = "MobileNetSSD_deploy.prototxt"
modelpath = "MobileNetSSD_deploy.caffemodel"
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
# for using OpenVino environment
# detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE)
# detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
tracker = CentroidTracker(maxDisappeared=80, maxDistance=90)
def non_max_suppression_fast(boxes, overlapThresh):
try:
if len(boxes) == 0:
return []
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
pick = []
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = np.argsort(y2)
while len(idxs) > 0:
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
overlap = (w * h) / area[idxs[:last]]
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlapThresh)[0])))
return boxes[pick].astype("int")
except Exception as e:
print("Exception occurred in non_max_suppression : {}".format(e))
def main():
cap = cv2.VideoCapture('test_video.mp4')
text = ""
fps_start_time = datetime.datetime.now()
fps = 0
total_frames = 0
object_id_list = []
dtime = dict()
dwell_time = dict()
while True:
ret, frame = cap.read()
frame = imutils.resize(frame, width=600)
total_frames = total_frames + 1
(H, W) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5)
detector.setInput(blob)
person_detections = detector.forward()
rects = []
for i in np.arange(0, person_detections.shape[2]):
confidence = person_detections[0, 0, i, 2]
if confidence > 0.5:
idx = int(person_detections[0, 0, i, 1])
if CLASSES[idx] != "person":
continue
person_box = person_detections[0, 0, i, 3:7] * np.array([W, H, W, H])
(startX, startY, endX, endY) = person_box.astype("int")
rects.append(person_box)
boundingboxes = np.array(rects)
boundingboxes = boundingboxes.astype(int)
rects = non_max_suppression_fast(boundingboxes, 0.3)
objects = tracker.update(rects)
for (objectId, bbox) in objects.items():
x1, y1, x2, y2 = bbox
x1 = int(x1)
y1 = int(y1)
x2 = int(x2)
y2 = int(y2)
if objectId not in object_id_list:
object_id_list.append(objectId)
dtime[objectId] = datetime.datetime.now()
dwell_time[objectId] = 0
else:
curr_time = datetime.datetime.now()
old_time = dtime[objectId]
time_diff = curr_time - old_time
dtime[objectId] = datetime.datetime.now()
sec = time_diff.total_seconds()
dwell_time[objectId] += sec
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
text = "{}|{}".format(objectId, int(dwell_time[objectId]))
cv2.putText(frame, text, (x1, y1-5), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
if int(dwell_time[objectId] > 10):
print("Warning")
fps_end_time = datetime.datetime.now()
time_diff = fps_end_time - fps_start_time
if time_diff.seconds == 0:
fps = 0.0
else:
fps = (total_frames / time_diff.seconds)
fps_text = "FPS: {:.2f}".format(fps)
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
cv2.imshow("Application", frame)
# print("Detected" + text)
key = cv2.waitKey(1)
if key == ord('q'):
break
cv2.destroyAllWindows()
main()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment