Upload New File

parent 9c700478
import json
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from nltk_utils import bag_of_words, tokenize, stem
from model import NeuralNet
with open('intents.json', 'r') as f:
intents = json.load(f)
all_words = []
tags = []
xy = []
for intent in intents['intents']:
tag = intent['tag']
# add to tag list
tags.append(tag)
for pattern in intent['patterns']:
# tokenize each word in the sentence
w = tokenize(pattern)
# add to our words list
all_words.extend(w)
# add to xy pair
xy.append((w, tag))
ignore_words = ['?', '.', '!']
all_words = [stem(w) for w in all_words if w not in ignore_words]
all_words = sorted(set(all_words))
tags = sorted(set(tags))
print(tags)
X_train = []
y_train = []
for (pattern_sentence, tag) in xy:
# X: bag of words for each pattern_sentence
bag = bag_of_words(pattern_sentence, all_words)
X_train.append(bag)
# y: PyTorch CrossEntropyLoss needs only class labels, not one-hot
label = tags.index(tag)
y_train.append(label)
X_train = np.array(X_train)
y_train = np.array(y_train)
class ChatDataset(Dataset):
def __init__(self):
self.n_samples = len(X_train)
self.x_data = X_train
self.y_data = y_train
# support indexing such that dataset[i] can be used to get i-th sample
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
# we can call len(dataset) to return the size
def __len__(self):
return self.n_samples
num_epochs = 1000
learning_rate = 0.001
batch_size = 8
input_size = len(X_train[0])
hidden_size = 8
output_size = len(tags)
print(input_size, output_size)
dataset = ChatDataset()
train_loader = DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=True,
num_workers=0)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = NeuralNet(input_size, hidden_size, output_size).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for (words, labels) in train_loader:
words = words.to(device)
labels = labels.to(dtype=torch.long).to(device)
# Forward pass
outputs = model(words)
# if y would be one-hot, we must apply
# labels = torch.max(labels, 1)[1]
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 100 == 0:
print (f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
print(f'final loss: {loss.item():.4f}')
data = {
"model_state": model.state_dict(),
"input_size": input_size,
"hidden_size": hidden_size,
"output_size": output_size,
"all_words": all_words,
"tags": tags
}
FILE = "data.pth"
torch.save(data, FILE)
print(f'training complete. file saved to {FILE}')
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment