Commit e29e7ea8 authored by Tandin Wangchen's avatar Tandin Wangchen

trying out initial implementation

parent d51f7fd3
from scipy.io.wavfile import read
import numpy as np
import matplotlib.pyplot as plt
# Read the Audiofile
samplerate, data = read('/home/tandin/notebook/Research/videosrc/myvoice.wav')
# Frame rate for the Audio
print(samplerate)
# Duration of the audio in Seconds
duration = len(data)/samplerate
print("Duration of Audio in Seconds", duration)
print("Duration of Audio in Minutes", duration/60)
time = np.arange(0,duration,1/samplerate)
# Plotting the Graph using Matplotlib
plt.plot(time,data)
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.title('data1.wav')
plt.show()
\ No newline at end of file
# Import packages
from pydub import AudioSegment
from pydub.playback import play
# Play audio
playaudio = AudioSegment.from_file("/home/tandin/notebook/Research/videosrc/IT4010ResearchProject34384144_full_video.mp3", format="mp3")
play(playaudio)
\ No newline at end of file
from os import path
from pydub import AudioSegment
# files
src = "/home/tandin/notebook/Research/videosrc/try1.mp3"
dst = "/home/tandin/notebook/Research/videosrc/myvoice.wav"
# convert wav to mp3
sound = AudioSegment.from_mp3(src)
sound.export(dst, format="wav")
\ No newline at end of file
import collections
import contextlib
import sys
import wave
import webrtcvad
def read_wave(path):
"""Reads a .wav file.
Takes the path, and returns (PCM audio data, sample rate).
"""
with contextlib.closing(wave.open(path, 'rb')) as wf:
num_channels = wf.getnchannels()
assert num_channels == 1
sample_width = wf.getsampwidth()
assert sample_width == 2
sample_rate = wf.getframerate()
assert sample_rate in (8000, 16000, 32000, 48000)
pcm_data = wf.readframes(wf.getnframes())
return pcm_data, sample_rate
def write_wave(path, audio, sample_rate):
"""Writes a .wav file.
Takes path, PCM audio data, and sample rate.
"""
with contextlib.closing(wave.open(path, 'wb')) as wf:
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(sample_rate)
wf.writeframes(audio)
class Frame(object):
"""Represents a "frame" of audio data."""
def __init__(self, bytes, timestamp, duration):
self.bytes = bytes
self.timestamp = timestamp
self.duration = duration
def frame_generator(frame_duration_ms, audio, sample_rate):
"""Generates audio frames from PCM audio data.
Takes the desired frame duration in milliseconds, the PCM data, and
the sample rate.
Yields Frames of the requested duration.
"""
n = int(sample_rate * (frame_duration_ms / 1000.0) * 2)
offset = 0
timestamp = 0.0
duration = (float(n) / sample_rate) / 2.0
while offset + n < len(audio):
yield Frame(audio[offset:offset + n], timestamp, duration)
timestamp += duration
offset += n
def vad_collector(sample_rate, frame_duration_ms,
padding_duration_ms, vad, frames):
"""Filters out non-voiced audio frames.
Given a webrtcvad.Vad and a source of audio frames, yields only
the voiced audio.
Uses a padded, sliding window algorithm over the audio frames.
When more than 90% of the frames in the window are voiced (as
reported by the VAD), the collector triggers and begins yielding
audio frames. Then the collector waits until 90% of the frames in
the window are unvoiced to detrigger.
The window is padded at the front and back to provide a small
amount of silence or the beginnings/endings of speech around the
voiced frames.
Arguments:
sample_rate - The audio sample rate, in Hz.
frame_duration_ms - The frame duration in milliseconds.
padding_duration_ms - The amount to pad the window, in milliseconds.
vad - An instance of webrtcvad.Vad.
frames - a source of audio frames (sequence or generator).
Returns: A generator that yields PCM audio data.
"""
num_padding_frames = int(padding_duration_ms / frame_duration_ms)
# We use a deque for our sliding window/ring buffer.
ring_buffer = collections.deque(maxlen=num_padding_frames)
# We have two states: TRIGGERED and NOTTRIGGERED. We start in the
# NOTTRIGGERED state.
triggered = False
voiced_frames = []
for frame in frames:
is_speech = vad.is_speech(frame.bytes, sample_rate)
sys.stdout.write('1' if is_speech else '0')
if not triggered:
ring_buffer.append((frame, is_speech))
num_voiced = len([f for f, speech in ring_buffer if speech])
# If we're NOTTRIGGERED and more than 90% of the frames in
# the ring buffer are voiced frames, then enter the
# TRIGGERED state.
if num_voiced > 0.9 * ring_buffer.maxlen:
triggered = True
sys.stdout.write('+(%s)' % (ring_buffer[0][0].timestamp,))
# We want to yield all the audio we see from now until
# we are NOTTRIGGERED, but we have to start with the
# audio that's already in the ring buffer.
for f, s in ring_buffer:
voiced_frames.append(f)
ring_buffer.clear()
else:
# We're in the TRIGGERED state, so collect the audio data
# and add it to the ring buffer.
voiced_frames.append(frame)
ring_buffer.append((frame, is_speech))
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
# If more than 90% of the frames in the ring buffer are
# unvoiced, then enter NOTTRIGGERED and yield whatever
# audio we've collected.
if num_unvoiced > 0.9 * ring_buffer.maxlen:
sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration))
triggered = False
yield b''.join([f.bytes for f in voiced_frames])
ring_buffer.clear()
voiced_frames = []
if triggered:
sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration))
sys.stdout.write('\n')
# If we have any leftover voiced audio when we run out of input,
# yield it.
if voiced_frames:
yield b''.join([f.bytes for f in voiced_frames])
def main(args):
if len(args) != 2:
sys.stderr.write(
'Usage: example.py <aggressiveness> <path to wav file>\n')
sys.exit(1)
audio, sample_rate = read_wave(args[1])
vad = webrtcvad.Vad(int(args[0]))
frames = frame_generator(30, audio, sample_rate)
frames = list(frames)
segments = vad_collector(sample_rate, 30, 300, vad, frames)
for i, segment in enumerate(segments):
path = 'chunk-%002d.wav' % (i,)
print(' Writing %s' % (path,))
write_wave(path, segment, sample_rate)
if __name__ == '__main__':
main(sys.argv[1:])
\ No newline at end of file
from pydub import AudioSegment
from pydub.silence import split_on_silence
# Variables for the audio file
file_path = "/home/tandin/notebook/Research/splitAudioFiles/splitaudio1/chunk0.mp4"
file_name = file_path.split('/')[-1]
audio_format = "mp4"
# Reading and splitting the audio file into chunks
sound = AudioSegment.from_file(file_path, format = audio_format)
audio_chunks = split_on_silence(sound
,min_silence_len = 100
,silence_thresh = -45
,keep_silence = 50
)
# Putting the file back together
combined = AudioSegment.empty()
for chunk in audio_chunks:
combined += chunk
combined.export(f'/home/tandin/notebook/Research/silenceremover{file_name}', format = audio_format)
\ No newline at end of file
from pydub import AudioSegment
import os
if not os.path.isdir("splitaudio"):
os.mkdir("splitaudio")
audio = AudioSegment.from_file("/home/tandin/notebook/Research/videosrc/IT4010ResearchProject34384144_full_video.mp4")
lengthaudio = len(audio)
print("Length of Audio File", lengthaudio)
start = 0
# # In Milliseconds, this will cut 10 Sec of audio(1 Sec = 1000 milliseconds)
threshold = 300000
end = 0
counter = 0
while start < len(audio):
end += threshold
print(start , end)
chunk = audio[start:end]
filename = f'splitaudio1/chunk{counter}.mp4'
chunk.export(filename, format="mp4")
counter +=1
start += threshold
\ No newline at end of file
import subprocess
import os
import sys
def convert_video_to_audio_ffmpeg(video_file, output_ext="mp3"):
"""Converts video to audio directly using `ffmpeg` command
with the help of subprocess module"""
filename, ext = os.path.splitext(video_file)
subprocess.call(["ffmpeg", "-y", "-i", video_file, f"{filename}.{output_ext}"],
stdout=subprocess.DEVNULL,
stderr=subprocess.STDOUT)
if __name__ == "__main__":
vf = sys.argv[1]
convert_video_to_audio_ffmpeg(vf)
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment