Commit e4821c01 authored by @Thilakasiri_M.D.T.S's avatar @Thilakasiri_M.D.T.S

Add to the component 4 backend file

parent 80bc90a4
import cv2
import mediapipe as mp
import numpy as np
import os
import random
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils
mp_holistic = mp.solutions.holistic
mp_pose = mp.solutions.pose
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2, circle_radius=2)
def calculate_angle(a, b, c):
a = np.array(a) # First
b = np.array(b) # Mid
c = np.array(c) # End
radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
angle = np.abs(radians * 180.0 / np.pi)
if angle > 180.0:
angle = 360 - angle
return angle
def get_human_thred():
cap = cv2.VideoCapture(0)
## Setup mediapipe instance
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
while cap.isOpened():
ret, frame = cap.read()
# Recolor image to RGB
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image.flags.writeable = False
# Make detection
results = pose.process(image)
# Recolor back to BGR
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Extract landmarks
try:
landmarks = results.pose_landmarks.landmark
# Get coordinates
shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
elbow = [landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y]
wrist = [landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y]
# Calculate angle
angle = calculate_angle(shoulder, elbow, wrist)
# Visualize angle
cv2.putText(image, str(angle),
tuple(np.multiply(elbow, [640, 480]).astype(int)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA
)
except:
pass
# Render detections
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(245, 117, 66), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(245, 66, 230), thickness=2, circle_radius=2)
)
cv2.imshow('Mediapipe Feed', image)
if cv2.waitKey(10) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def get_human_thred_temp():
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
sample_imgs = os.listdir('component_4/sample_data')
frame = cv2.imread('component_4/sample_data/' + str(random.choice(sample_imgs)))
# Recolor image to RGB
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image.flags.writeable = False
# Make detection
results = pose.process(image)
# Recolor back to BGR
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Extract landmarks
try:
landmarks = results.pose_landmarks.landmark
# Get coordinates
shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
elbow = [landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y]
wrist = [landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y]
# Calculate angle
angle = calculate_angle(shoulder, elbow, wrist)
if angle > 60:
return True
else:
return False
except:
return False
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment