1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from scipy.spatial.distance import euclidean
from imutils import perspective
from imutils import contours
import argparse
import numpy as np
import imutils
import cv2
import base64
import io
from PIL import Image
import os
def show_images(images):
for i, img in enumerate(images):
cv2.imshow("image_" + str(i), img)
def main(data):
#decode the image
decoded_data = base64.b64decode(data)
np_data = np.fromstring(decoded_data, np.uint8)
in_img = cv2.imdecode(np_data, cv2.IMREAD_UNCHANGED)
out_img = in_img.copy()
if len(out_img.shape) < 3:
out_img.resize(*out_img.shape,1)
gray = cv2.cvtColor(out_img, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (9, 9), 0)
edged = cv2.Canny(blur, 50, 100)
edged = cv2.dilate(edged, None, iterations=1)
edged = cv2.erode(edged, None, iterations=1)
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
(cnts, _) = contours.sort_contours(cnts)
cnts = [x for x in cnts if cv2.contourArea(x) >2000]
ref_object = cnts[0]
box = cv2.minAreaRect(ref_object)
box = cv2.boxPoints(box)
box = np.array(box, dtype="int")
box = perspective.order_points(box)
(tl, tr, br, bl) = box
dist_in_pixel = euclidean(tl, tr)
dist_in_cm =10
pixel_per_cm = dist_in_pixel/dist_in_cm
for cnt in cnts:
box = cv2.minAreaRect(cnt)
box = cv2.boxPoints(box)
box = np.array(box, dtype="int")
box = perspective.order_points(box)
(tl, tr, br, bl) = box
cv2.drawContours(out_img, [box.astype("int")], -1, (0, 0, 255), 2)
mid_pt_horizontal = (tl[0] + int(abs(tr[0] - tl[0])/2), tl[1] + int(abs(tr[1] - tl[1])/2))
mid_pt_verticle = (tr[0] + int(abs(tr[0] - br[0])/2), tr[1] + int(abs(tr[1] - br[1])/2))
wid = euclidean(tl, tr)/pixel_per_cm
ht = euclidean(tr, br)/pixel_per_cm
cv2.putText(out_img, "{:.1f}cm".format(ht), (int(mid_pt_verticle[0] + 10), int(mid_pt_verticle[1])),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 5), 2)
pil_img = Image.fromarray(out_img)
buff = io.BytesIO()
pil_img.save(buff, format="JPEG")
#encode the image
img_str = base64.b64encode(buff.getvalue())
return ""+str(img_str, 'utf-8')