Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
I
Intelligent English Tutor
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
2023-24-027
Intelligent English Tutor
Commits
75db35fc
Commit
75db35fc
authored
Nov 07, 2023
by
Udara Rangika
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
models created
parent
68170fbf
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
62 additions
and
0 deletions
+62
-0
proficiency-identification.ipynb
proficiency-identification.ipynb
+62
-0
No files found.
proficiency-identification.ipynb
View file @
75db35fc
...
...
@@ -72,6 +72,68 @@
" random_state=42\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Models"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import seaborn as sns\n",
"from sklearn.svm import SVC\n",
"from xgboost import XGBClassifier\n",
"from matplotlib import pyplot as plt\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn.metrics import confusion_matrix, classification_report"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Random Forest Classifier\n",
"rfc = RandomForestClassifier(\n",
" n_estimators=100, \n",
" random_state=42\n",
" )\n",
"rfc.fit(X, Y)\n",
"print(\"Random Forest Classifier Trained\")\n",
"\n",
"# XGBoost Classifier\n",
"xgb = XGBClassifier(\n",
" n_estimators=100, \n",
" random_state=42\n",
" )\n",
"xgb.fit(X, Y)\n",
"print(\"XGBoost Classifier Trained\")\n",
"\n",
"# Support Vector Machine\n",
"svc = SVC(\n",
" kernel='linear',\n",
" random_state=42\n",
" )\n",
"svc.fit(X, Y)\n",
"print(\"Support Vector Machine Trained\")\n",
"\n",
"# KNN Classifier\n",
"knn = KNeighborsClassifier(\n",
" n_neighbors=5,\n",
" metric='minkowski',\n",
" p=2\n",
" )\n",
"knn.fit(X, Y)\n",
"print(\"KNN Classifier Trained\")"
]
}
],
"metadata": {
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment