Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
21_22-J 38
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
21_22-J 38
21_22-J 38
Commits
86def30e
Commit
86def30e
authored
Jan 07, 2022
by
W.D.R.P. Sandeepa
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add graph
parent
235234ed
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
21 additions
and
2 deletions
+21
-2
backend/IT18218640/model.h5
backend/IT18218640/model.h5
+0
-0
backend/IT18218640/train.py
backend/IT18218640/train.py
+21
-2
No files found.
backend/IT18218640/model.h5
deleted
100644 → 0
View file @
235234ed
File deleted
backend/IT18218640/train.py
View file @
86def30e
...
...
@@ -2,12 +2,13 @@ import json
import
numpy
as
np
import
tensorflow.keras
as
keras
from
sklearn.model_selection
import
train_test_split
import
matplotlib.pyplot
as
plt
DATA_PATH
=
"data.json"
SAVE_MODEL_PATH
=
"model.h5"
LEARNING_RATE
=
0.0001
EPOCHS
=
4
0
EPOCHS
=
6
0
BATCH_SIZE
=
32
NUM_KEYWORDS
=
10
...
...
@@ -77,6 +78,22 @@ def build_model(input_shape, learning_rate, error="sparse_categorical_crossentro
return
model
def
show_graph
(
history
):
plt
.
plot
(
history
.
history
[
'loss'
],
'r'
,
label
=
'train loss'
)
plt
.
plot
(
history
.
history
[
'val_loss'
],
'g'
,
label
=
'validation loss'
)
plt
.
legend
()
plt
.
xlabel
(
'epochs'
)
plt
.
ylabel
(
'Loss'
)
plt
.
show
()
plt
.
subplot
(
1
,
2
,
1
)
plt
.
ylabel
(
'Accuracy'
)
plt
.
xlabel
(
'Epochs'
)
plt
.
plot
(
history
.
history
[
'accuracy'
],
label
=
'Training Accuracy'
)
plt
.
plot
(
history
.
history
[
'val_accuracy'
],
label
=
'Validation Accuracy'
)
plt
.
legend
()
plt
.
show
()
def
main
():
...
...
@@ -88,7 +105,7 @@ def main():
model
=
build_model
(
input_shape
,
LEARNING_RATE
)
# train the model
model
.
fit
(
X_train
,
y_train
,
epochs
=
EPOCHS
,
batch_size
=
BATCH_SIZE
,
validation_data
=
(
X_validation
,
y_validation
))
history
=
model
.
fit
(
X_train
,
y_train
,
epochs
=
EPOCHS
,
batch_size
=
BATCH_SIZE
,
validation_data
=
(
X_validation
,
y_validation
))
# evaluate the model
test_error
,
test_accuracy
=
model
.
evaluate
(
X_test
,
y_test
)
...
...
@@ -97,5 +114,7 @@ def main():
# save the model
model
.
save
(
SAVE_MODEL_PATH
)
show_graph
(
history
)
if
__name__
==
"__main__"
:
main
()
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment