Commit 9dfa757d authored by Neranga K.T.'s avatar Neranga K.T.

user request was taken

parent dbd904b9
from flask import Flask, request, jsonify
import joblib
from keras.layers import Dense,Dropout
from keras.models import Sequential
import keras.backend as K
scaler_x = joblib.load('scaler_x.pkl')
scaler_y = joblib.load('scaler_y.pkl')
app=Flask(__name__)
def load_dyslexia_model():
K.clear_session()
model=Sequential() #model is an empty NN
#1st hidden layer (dense type-fully connected)
model.add(Dense(64,input_dim=7,activation='relu'))
model.add(Dropout(0.5))
#2nd Hidden layer
model.add(Dense(128,activation='relu',kernel_initializer='normal'))
model.add(Dropout(0.5))
model.add(Dense(64,activation='relu',kernel_initializer='normal'))
model.add(Dropout(0.5))
model.add(Dense(7,activation='relu',kernel_initializer='normal'))
#final layer
model.add(Dense(1,input_dim=7,activation='linear'))
model.compile(loss='mse',optimizer='adam')
model.load_weights('model-569.model')
return model
@app.route('/get_level', methods=['POST','GET'])
def get_level():
# User_json=request.json
Q1 =int(request.args.get('q1'))
Q2 =int(request.args.get('q2'))
Q3 =int(request.args.get('q3'))
Q4 =int(request.args.get('q4'))
Q5 =int(request.args.get('q5'))
Q6 =int(request.args.get('q6'))
TD =float(request.args.get('time'))
test_data=[Q1,Q2,Q3,Q4,Q5,Q6,TD]
print(test_data)
return "terra"
app.run(host='0.0.0.0',port=5000)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment