Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
I_Helmet
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
21_22-J 62
I_Helmet
Commits
abb1e118
Commit
abb1e118
authored
Apr 27, 2022
by
DESKTOP-95L9KLS\Sandun
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
MQ8 gas sensor mod
parent
bccb455c
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
69 additions
and
20 deletions
+69
-20
IT18203172/MQ-8_Sensor/MQ-8_Sensor.ino
IT18203172/MQ-8_Sensor/MQ-8_Sensor.ino
+69
-20
No files found.
IT18203172/MQ-8_Sensor/MQ-8_Sensor.ino
View file @
abb1e118
#define MQ_PIN (0)
/************************Hardware Related Macros************************************/
#define RL_VALUE (10)
#define MQ_PIN (0) //define which analog input channel you are going to use
#define RO_CLEAN_AIR_FACTOR (9.21)
#define RL_VALUE (10) //define the load resistance on the board, in kilo ohms
#define CALIBARAION_SAMPLE_TIMES (50)
#define RO_CLEAN_AIR_FACTOR (9.21) //RO_CLEAR_AIR_FACTOR=(Sensor resistance in clean air)/RO,
#define CALIBRATION_SAMPLE_INTERVAL (500)
//which is derived from the chart in datasheet
#define READ_SAMPLE_INTERVAL (50)
#define READ_SAMPLE_TIMES (5)
/***********************Software Related Macros************************************/
#define CALIBARAION_SAMPLE_TIMES (50) //define how many samples you are going to take in the calibration phase
#define CALIBRATION_SAMPLE_INTERVAL (500) //define the time interal(in milisecond) between each samples in the
//cablibration phase
#define READ_SAMPLE_INTERVAL (50) //define how many samples you are going to take in normal operation
#define READ_SAMPLE_TIMES (5) //define the time interal(in milisecond) between each samples in
//normal operation
/**********************Application Related Macros**********************************/
#define GAS_H2 (0)
#define GAS_H2 (0)
float
H2Curve
[
3
]
=
{
2.3
,
0.93
,
-
1.44
};
/*****************************Globals***********************************************/
float
H2Curve
[
3
]
=
{
2.3
,
0.93
,
-
1.44
};
//two points are taken from the curve in datasheet.
float
Ro
=
10
;
//with these two points, a line is formed which is "approximately equivalent"
//to the original curve.
//data format:{ x, y, slope}; point1: (lg200, lg8.5), point2: (lg10000, lg0.03)
float
Ro
=
10
;
//Ro is initialized to 10 kilo ohms
void
setup
()
{
void
setup
()
{
Serial
.
begin
(
9600
);
Serial
.
begin
(
9600
);
//UART setup, baudrate = 9600bps
Serial
.
print
(
"Calibrating...
\n
"
);
Serial
.
print
(
"Calibrating...
\n
"
);
Ro
=
MQCalibration
(
MQ_PIN
);
Ro
=
MQCalibration
(
MQ_PIN
);
//Calibrating the sensor. Please make sure the sensor is in clean air
//when you perform the calibration
Serial
.
print
(
"Calibration is done...
\n
"
);
Serial
.
print
(
"Calibration is done...
\n
"
);
Serial
.
print
(
"Ro="
);
Serial
.
print
(
"Ro="
);
Serial
.
print
(
Ro
);
Serial
.
print
(
Ro
);
...
@@ -31,27 +43,48 @@ void loop() {
...
@@ -31,27 +43,48 @@ void loop() {
delay
(
200
);
delay
(
200
);
}
}
/****************** MQResistanceCalculation ****************************************
Input: raw_adc - raw value read from adc, which represents the voltage
Output: the calculated sensor resistance
Remarks: The sensor and the load resistor forms a voltage divider. Given the voltage
across the load resistor and its resistance, the resistance of the sensor
could be derived.
************************************************************************************/
float
MQResistanceCalculation
(
int
raw_adc
)
{
float
MQResistanceCalculation
(
int
raw_adc
)
{
return
(
((
float
)
RL_VALUE
*
(
1023
-
raw_adc
)
/
raw_adc
));
return
(
((
float
)
RL_VALUE
*
(
1023
-
raw_adc
)
/
raw_adc
));
}
}
/***************************** MQCalibration ****************************************
Input: mq_pin - analog channel
Output: Ro of the sensor
Remarks: This function assumes that the sensor is in clean air. It use
MQResistanceCalculation to calculates the sensor resistance in clean air
and then divides it with RO_CLEAN_AIR_FACTOR. RO_CLEAN_AIR_FACTOR is about
10, which differs slightly between different sensors.
************************************************************************************/
float
MQCalibration
(
int
mq_pin
)
{
float
MQCalibration
(
int
mq_pin
)
{
int
i
;
int
i
;
float
val
=
0
;
float
val
=
0
;
for
(
i
=
0
;
i
<
CALIBARAION_SAMPLE_TIMES
;
i
++
)
{
for
(
i
=
0
;
i
<
CALIBARAION_SAMPLE_TIMES
;
i
++
)
{
//take multiple samples
val
+=
MQResistanceCalculation
(
analogRead
(
mq_pin
));
val
+=
MQResistanceCalculation
(
analogRead
(
mq_pin
));
delay
(
CALIBRATION_SAMPLE_INTERVAL
);
delay
(
CALIBRATION_SAMPLE_INTERVAL
);
}
}
val
=
val
/
CALIBARAION_SAMPLE_TIMES
;
val
=
val
/
CALIBARAION_SAMPLE_TIMES
;
//calculate the average value
val
=
val
/
RO_CLEAN_AIR_FACTOR
;
//divided by RO_CLEAN_AIR_FACTOR yields the Ro
//according to the chart in the datasheet
val
=
val
/
RO_CLEAN_AIR_FACTOR
;
return
val
;
return
val
;
}
}
/***************************** MQRead *********************************************
Input: mq_pin - analog channel
Output: Rs of the sensor
Remarks: This function use MQResistanceCalculation to caculate the sensor resistenc (Rs).
The Rs changes as the sensor is in the different consentration of the target
gas. The sample times and the time interval between samples could be configured
by changing the definition of the macros.
************************************************************************************/
float
MQRead
(
int
mq_pin
)
{
float
MQRead
(
int
mq_pin
)
{
int
i
;
int
i
;
float
rs
=
0
;
float
rs
=
0
;
...
@@ -66,6 +99,13 @@ float MQRead(int mq_pin) {
...
@@ -66,6 +99,13 @@ float MQRead(int mq_pin) {
return
rs
;
return
rs
;
}
}
/***************************** MQGetGasPercentage **********************************
Input: rs_ro_ratio - Rs divided by Ro
gas_id - target gas type
Output: ppm of the target gas
Remarks: This function passes different curves to the MQGetPercentage function which
calculates the ppm (parts per million) of the target gas.
************************************************************************************/
int
MQGetGasPercentage
(
float
rs_ro_ratio
,
int
gas_id
)
{
int
MQGetGasPercentage
(
float
rs_ro_ratio
,
int
gas_id
)
{
if
(
gas_id
==
GAS_H2
)
{
if
(
gas_id
==
GAS_H2
)
{
return
MQGetPercentage
(
rs_ro_ratio
,
H2Curve
);
return
MQGetPercentage
(
rs_ro_ratio
,
H2Curve
);
...
@@ -73,6 +113,15 @@ int MQGetGasPercentage(float rs_ro_ratio, int gas_id) {
...
@@ -73,6 +113,15 @@ int MQGetGasPercentage(float rs_ro_ratio, int gas_id) {
return
0
;
return
0
;
}
}
/***************************** MQGetPercentage **********************************
Input: rs_ro_ratio - Rs divided by Ro
pcurve - pointer to the curve of the target gas
Output: ppm of the target gas
Remarks: By using the slope and a point of the line. The x(logarithmic value of ppm)
of the line could be derived if y(rs_ro_ratio) is provided. As it is a
logarithmic coordinate, power of 10 is used to convert the result to non-logarithmic
value.
************************************************************************************/
int
MQGetPercentage
(
float
rs_ro_ratio
,
float
*
pcurve
)
{
int
MQGetPercentage
(
float
rs_ro_ratio
,
float
*
pcurve
)
{
return
(
pow
(
10
,(
((
log
(
rs_ro_ratio
)
-
pcurve
[
1
])
/
pcurve
[
2
])
+
pcurve
[
0
])));
return
(
pow
(
10
,(
((
log
(
rs_ro_ratio
)
-
pcurve
[
1
])
/
pcurve
[
2
])
+
pcurve
[
0
])));
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment