Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
S
SpeakEzy_Backend
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shehan Liyanage
SpeakEzy_Backend
Commits
e6a20bfd
Commit
e6a20bfd
authored
Mar 18, 2024
by
Shehan
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add backend Shehan
parent
c8433938
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
207 additions
and
0 deletions
+207
-0
README.md
README.md
+1
-0
app.py
app.py
+206
-0
No files found.
README.md
View file @
e6a20bfd
# SpeakEzy_Backend
# SpeakEzy_Backend
Sign language to sinhala subtitles you need python 3.10.10 and other packages mention in jupyter notebook code section
app.py
0 → 100644
View file @
e6a20bfd
from
flask
import
Flask
,
request
from
flask_socketio
import
SocketIO
,
emit
,
send
import
cv2
import
io
import
numpy
as
np
import
base64
import
tensorflow
as
tf
from
tensorflow.keras.models
import
load_model
import
mediapipe
as
mp
from
tensorflow.keras.models
import
load_model
mp_holistic
=
mp
.
solutions
.
holistic
mp_drawing
=
mp
.
solutions
.
drawing_utils
actions
=
[
"haloo"
,
"dannwa"
,
"mama"
,
"obata"
,
"puluwan"
,
"suba"
,
"udaasanak"
]
# Load the saved model
model
=
load_model
(
r"/Users/shehanliyanage/SLIIT/4th year 1st sem/Research/Project/api/finalModel.h5"
)
sequence
=
[]
sentence
=
[]
predictions
=
[]
threshold
=
0.7
count
=
31
def
mediapipe_detection
(
image
,
model
):
image
=
cv2
.
cvtColor
(
image
,
cv2
.
COLOR_BGR2RGB
)
# COLOR CONVERSION BGR 2 RGB
image
.
flags
.
writeable
=
False
# Image is no longer writeable
results
=
model
.
process
(
image
)
# Make prediction
image
.
flags
.
writeable
=
True
# Image is now writeable
image
=
cv2
.
cvtColor
(
image
,
cv2
.
COLOR_RGB2BGR
)
# COLOR COVERSION RGB 2 BGR
return
image
,
results
def
draw_landmarks
(
image
,
results
):
# Draw face connections
mp_drawing
.
draw_landmarks
(
image
,
results
.
face_landmarks
,
mp_holistic
.
FACEMESH_TESSELATION
,
mp_drawing
.
DrawingSpec
(
color
=
(
70
,
110
,
10
),
thickness
=
1
,
circle_radius
=
1
),
mp_drawing
.
DrawingSpec
(
color
=
(
70
,
256
,
121
),
thickness
=
1
,
circle_radius
=
1
),
)
# Draw pose connections
mp_drawing
.
draw_landmarks
(
image
,
results
.
pose_landmarks
,
mp_holistic
.
POSE_CONNECTIONS
,
mp_drawing
.
DrawingSpec
(
color
=
(
70
,
22
,
10
),
thickness
=
2
,
circle_radius
=
4
),
mp_drawing
.
DrawingSpec
(
color
=
(
70
,
44
,
121
),
thickness
=
2
,
circle_radius
=
2
),
)
# Draw left hand connections
mp_drawing
.
draw_landmarks
(
image
,
results
.
left_hand_landmarks
,
mp_holistic
.
HAND_CONNECTIONS
,
mp_drawing
.
DrawingSpec
(
color
=
(
121
,
22
,
76
),
thickness
=
2
,
circle_radius
=
4
),
mp_drawing
.
DrawingSpec
(
color
=
(
121
,
44
,
250
),
thickness
=
2
,
circle_radius
=
2
),
)
# Draw right hand connections
mp_drawing
.
draw_landmarks
(
image
,
results
.
right_hand_landmarks
,
mp_holistic
.
HAND_CONNECTIONS
,
mp_drawing
.
DrawingSpec
(
color
=
(
245
,
117
,
66
),
thickness
=
2
,
circle_radius
=
4
),
mp_drawing
.
DrawingSpec
(
color
=
(
245
,
66
,
230
),
thickness
=
2
,
circle_radius
=
2
),
)
def
extract_keypoints
(
results
):
pose
=
(
np
.
array
(
[
[
res
.
x
,
res
.
y
,
res
.
z
,
res
.
visibility
]
for
res
in
results
.
pose_landmarks
.
landmark
]
)
.
flatten
()
if
results
.
pose_landmarks
else
np
.
zeros
(
33
*
4
)
)
face
=
(
np
.
array
(
[[
res
.
x
,
res
.
y
,
res
.
z
]
for
res
in
results
.
face_landmarks
.
landmark
]
)
.
flatten
()
if
results
.
face_landmarks
else
np
.
zeros
(
468
*
3
)
)
lh
=
(
np
.
array
(
[[
res
.
x
,
res
.
y
,
res
.
z
]
for
res
in
results
.
left_hand_landmarks
.
landmark
]
)
.
flatten
()
if
results
.
left_hand_landmarks
else
np
.
zeros
(
21
*
3
)
)
rh
=
(
np
.
array
(
[[
res
.
x
,
res
.
y
,
res
.
z
]
for
res
in
results
.
right_hand_landmarks
.
landmark
]
)
.
flatten
()
if
results
.
right_hand_landmarks
else
np
.
zeros
(
21
*
3
)
)
return
np
.
concatenate
([
pose
,
face
,
lh
,
rh
])
def
PredictSign
(
frame
):
with
mp_holistic
.
Holistic
(
min_detection_confidence
=
0.5
,
min_tracking_confidence
=
0.5
)
as
holistic
:
# Make detections
global
sequence
global
sentence
global
predictions
global
threshold
global
count
# if len(predictions)>30:
# predictions.pop()
# if len(sentence)>100:
# sentence.pop()
image
,
results
=
mediapipe_detection
(
frame
,
holistic
)
draw_landmarks
(
image
,
results
)
# 2. Prediction logic
keypoints
=
extract_keypoints
(
results
)
sequence
.
append
(
keypoints
)
if
len
(
sequence
)
>
30
:
sequence
=
sequence
[
-
30
:]
res
=
model
.
predict
(
np
.
expand_dims
(
sequence
,
axis
=
0
))[
0
]
predictions
.
append
(
np
.
argmax
(
res
))
if
np
.
unique
(
predictions
[
-
3
:])[
0
]
==
np
.
argmax
(
res
):
if
res
[
np
.
argmax
(
res
)]
>
threshold
:
if
len
(
sentence
)
>
0
:
if
actions
[
np
.
argmax
(
res
)]
!=
sentence
[
-
1
]:
sentence
.
append
(
actions
[
np
.
argmax
(
res
)])
return
sentence
[
-
1
]
else
:
sentence
.
append
(
actions
[
np
.
argmax
(
res
)])
return
sentence
[
-
1
]
else
:
pass
else
:
count
-=
1
# return (f"Feeding model Please wait for {count} seconds")
# model = load_model('C:/Users/KIIT/Desktop/action.h5')
app
=
Flask
(
__name__
)
app
.
config
[
"SECRET_KEY"
]
=
"mysecretkey"
socketio
=
SocketIO
(
app
,
cors_allowed_origins
=
"*"
)
@
app
.
route
(
"/"
)
def
index
():
return
"Running"
@
socketio
.
on
(
"connect"
)
def
on_connect
():
emit
(
"me"
,
request
.
sid
)
@
socketio
.
on
(
"disconnect"
)
def
on_disconnect
():
send
(
"callEnded"
,
broadcast
=
True
)
@
socketio
.
on
(
"predictionVideo"
)
def
on_prediction_video
(
data
):
global
actions
img_bytes
=
base64
.
b64decode
(
data
.
split
(
","
)[
1
])
np_arr
=
np
.
frombuffer
(
img_bytes
,
np
.
uint8
)
img
=
cv2
.
imdecode
(
np_arr
,
cv2
.
IMREAD_COLOR
)
ans
=
PredictSign
(
img
)
# Use the img for analysis or processing
# if ans not in actions:
# ans='hi'
print
(
ans
)
emit
(
"predictionVideo"
,
ans
)
@
socketio
.
on
(
"callUser"
)
def
on_call_user
(
data
):
from_user
=
data
[
"from"
]
userToCall
=
data
[
"userToCall"
]
caller_name
=
data
[
"name"
]
signal
=
data
[
"signalData"
]
emit
(
"callUser"
,
{
"from"
:
from_user
,
"name"
:
caller_name
,
"signal"
:
signal
},
room
=
userToCall
,
)
@
socketio
.
on
(
"answerCall"
)
def
on_answer_call
(
data
):
emit
(
"callAccepted"
,
data
[
"signal"
],
room
=
data
[
"to"
])
if
__name__
==
"__main__"
:
socketio
.
run
(
app
,
debug
=
True
,
port
=
5000
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment