Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
2
2021-005
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
IT18019896 A.R.M.R.M.Mudalinayake
2021-005
Commits
808fd2ea
Commit
808fd2ea
authored
Nov 26, 2021
by
Dinushe Jayasekera
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'Dinushe' into 'master'
DL model See merge request
2021-005/2021-005!6
parents
e96023e6
8df08fde
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
235 additions
and
0 deletions
+235
-0
Audio.py
Audio.py
+235
-0
No files found.
Audio.py
0 → 100644
View file @
808fd2ea
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import
keras
from
keras.layers
import
Activation
,
Dense
,
Dropout
,
Conv2D
,
Flatten
,
MaxPooling2D
from
keras.models
import
Sequential
from
keras.utils
import
np_utils
import
librosa
import
librosa.display
import
numpy
as
np
import
pandas
as
pd
import
random
import
warnings
warnings
.
filterwarnings
(
'ignore'
)
# In[2]:
# Read Data
data
=
pd
.
read_csv
(
'ASDmeta.csv'
)
data
.
head
(
5
)
# In[3]:
data
.
shape
# In[4]:
# Get data over 3 seconds long
valid_data
=
data
[[
'slice_file_name'
,
'fold'
,
'classID'
,
'class'
]][
data
[
'end'
]
-
data
[
'start'
]
>=
3
]
valid_data
.
shape
# In[5]:
# Example of a children play spectrogram
y
,
sr
=
librosa
.
load
(
'audio/fold5/100263-2-0-137.wav'
,
duration
=
2.97
)
ps
=
librosa
.
feature
.
melspectrogram
(
y
=
y
,
sr
=
sr
)
ps
.
shape
# In[6]:
librosa
.
display
.
specshow
(
ps
,
y_axis
=
'mel'
,
x_axis
=
'time'
)
# In[7]:
###for one audio file
def
features_extractor
(
file
):
audio
,
sample_rate
=
librosa
.
load
(
file_name
,
res_type
=
'kaiser_fast'
)
mfccs_features
=
librosa
.
feature
.
mfcc
(
y
=
audio
,
sr
=
sample_rate
,
n_mfcc
=
40
)
mfccs_scaled_features
=
np
.
mean
(
mfccs_features
.
T
,
axis
=
0
)
return
mfccs_scaled_features
# In[39]:
import
os
from
tqdm
import
tqdm
#to see progress
#audio_dataset_path='D:/4thYear/Research/AudioClassifier(ETA)/UrbanSound8K/audio'
extracted_features
=
[]
for
index_num
,
row
in
tqdm
(
valid_data
.
iterrows
()):
#if row["class"] == 'children_playing' or row["class"] == 'children_playing2':
#y, sr = librosa.load('audio/fold'+ str(row["fold"]) +'/'+ row["slice_file_name"], duration=2.97)
y
,
sr
=
librosa
.
load
(
'audio/fold'
+
str
(
row
[
"fold"
])
+
'/'
+
row
[
"slice_file_name"
],
duration
=
2.97
)
#for newly created set
if
os
.
path
.
exists
(
'audio/fold'
+
str
(
row
[
"fold"
])
+
'/speed_107'
+
row
[
"slice_file_name"
]):
#os.makedirs(newpath)
ps
=
librosa
.
feature
.
melspectrogram
(
y
=
y
,
sr
=
sr
)
if
ps
.
shape
!=
(
128
,
128
):
continue
librosa
.
display
.
specshow
(
ps
,
y_axis
=
'mel'
,
x_axis
=
'time'
)
ps
.
shape
#print(' ID:'+ str(row.classID))
extracted_features
.
append
(
(
ps
,
row
.
classID
)
)
ps
=
librosa
.
feature
.
melspectrogram
(
y
=
y
,
sr
=
sr
)
if
ps
.
shape
!=
(
128
,
128
):
continue
librosa
.
display
.
specshow
(
ps
,
y_axis
=
'mel'
,
x_axis
=
'time'
)
ps
.
shape
#print(' ID:'+ str(row.classID))
extracted_features
.
append
(
(
ps
,
row
.
classID
)
)
# In[41]:
print
(
"Number of samples: "
,
len
(
extracted_features
))
# In[10]:
dataset
=
extracted_features
random
.
shuffle
(
dataset
)
train
=
dataset
[:
1500
]
test
=
dataset
[
1500
:]
X_train
,
y_train
=
zip
(
*
train
)
X_test
,
y_test
=
zip
(
*
test
)
# Reshape for CNN input
X_train
=
np
.
array
([
x
.
reshape
(
(
128
,
128
,
1
)
)
for
x
in
X_train
])
X_test
=
np
.
array
([
x
.
reshape
(
(
128
,
128
,
1
)
)
for
x
in
X_test
])
# One-Hot encoding for classes
y_train
=
np
.
array
(
keras
.
utils
.
np_utils
.
to_categorical
(
y_train
,
10
))
y_test
=
np
.
array
(
keras
.
utils
.
np_utils
.
to_categorical
(
y_test
,
10
))
# In[11]:
model
=
Sequential
()
input_shape
=
(
128
,
128
,
1
)
model
.
add
(
Conv2D
(
24
,
(
5
,
5
),
strides
=
(
1
,
1
),
input_shape
=
input_shape
))
model
.
add
(
MaxPooling2D
((
4
,
2
),
strides
=
(
4
,
2
)))
model
.
add
(
Activation
(
'relu'
))
model
.
add
(
Conv2D
(
48
,
(
5
,
5
),
padding
=
"valid"
))
model
.
add
(
MaxPooling2D
((
4
,
2
),
strides
=
(
4
,
2
)))
model
.
add
(
Activation
(
'relu'
))
model
.
add
(
Conv2D
(
48
,
(
5
,
5
),
padding
=
"valid"
))
model
.
add
(
Activation
(
'relu'
))
model
.
add
(
Flatten
())
model
.
add
(
Dropout
(
rate
=
0.5
))
model
.
add
(
Dense
(
64
))
model
.
add
(
Activation
(
'relu'
))
model
.
add
(
Dropout
(
rate
=
0.5
))
model
.
add
(
Dense
(
10
))
model
.
add
(
Activation
(
'softmax'
))
# In[44]:
model
.
compile
(
optimizer
=
"Adam"
,
loss
=
"categorical_crossentropy"
,
metrics
=
[
'accuracy'
])
model
.
fit
(
x
=
X_train
,
y
=
y_train
,
epochs
=
50
,
batch_size
=
128
,
validation_data
=
(
X_test
,
y_test
))
score
=
model
.
evaluate
(
x
=
X_test
,
y
=
y_test
)
print
(
'Test loss:'
,
score
[
0
])
print
(
'Test accuracy:'
,
score
[
1
])
# In[18]:
#data augmentation
#time variation
import
soundfile
as
sf
y
,
sr
=
librosa
.
load
(
'audio/fold1/14113-4-0-1.wav'
,
duration
=
2.97
)
y_changed
=
librosa
.
effects
.
time_stretch
(
y
,
rate
=
0.81
)
sf
.
write
(
'augmented/fold1/speed_81/14113-4-0-1.wav'
,
y_changed
,
sr
)
# In[ ]:
#newpath = r'C:\Program Files\arbitrary'
if
not
os
.
path
.
exists
(
'audio/fold'
+
str
(
row
[
"fold"
])
+
'/speed_'
+
str
(
int
(
rate
*
100
))):
os
.
makedirs
(
newpath
)
# In[34]:
rate
=
1.07
# replace with 0.81 and execute again
for
index_num
,
row
in
tqdm
(
valid_data
.
iterrows
()):
if
row
[
"class"
]
==
'children_playing'
or
row
[
"class"
]
==
'children_playing2'
:
y
,
sr
=
librosa
.
load
(
'audio/fold'
+
str
(
row
[
"fold"
])
+
'/'
+
row
[
"slice_file_name"
])
y_changed
=
librosa
.
effects
.
time_stretch
(
y
,
rate
=
rate
)
if
not
os
.
path
.
exists
(
'audio/fold'
+
str
(
row
[
"fold"
])
+
'/speed_'
+
str
(
int
(
rate
*
100
))):
os
.
makedirs
(
'audio/fold'
+
str
(
row
[
"fold"
])
+
'/speed_'
+
str
(
int
(
rate
*
100
)))
print
(
'new path created : '
+
'audio/fold'
+
str
(
row
[
"fold"
])
+
'/speed_'
+
str
(
int
(
rate
*
100
)))
sf
.
write
(
'audio/fold'
+
str
(
row
[
"fold"
])
+
'/speed_'
+
str
(
int
(
rate
*
100
))
+
'/'
+
row
[
"slice_file_name"
]
,
y_changed
,
sr
)
# In[37]:
len
(
extracted_features
)
# In[45]:
model
.
save_weights
(
'model_weights_acc_new.h5'
)
# In[ ]:
#for varying pitch
n_steps
=
2
#-1, -2, 2, 1
for
row
in
valid_data
.
itertuples
():
y
,
sr
=
librosa
.
load
(
'audio/'
+
row
.
path
)
y_changed
=
librosa
.
effects
.
pitch_shift
(
y
,
sr
,
n_steps
=
n_steps
)
librosa
.
output
.
write_wav
(
'augmented/fold'
+
str
(
row
.
fold
)
+
'/ps1_'
+
str
(
int
(
n_steps
))
+
'/'
+
row
.
slice_file_name
,
y_changed
,
sr
)
# In[ ]:
n_steps
=
2.5
#-2.5, -3.5, 2.5, 3.5
for
row
in
valid_data
.
itertuples
():
y
,
sr
=
librosa
.
load
(
'audio/'
+
row
.
path
)
y_changed
=
librosa
.
effects
.
pitch_shift
(
y
,
sr
,
n_steps
=
n_steps
)
librosa
.
output
.
write_wav
(
'code/augmented/fold'
+
str
(
row
.
fold
)
+
'/ps2_m'
+
str
(
int
(
n_steps
*
10
))
+
'/'
+
row
.
slice_file_name
,
y_changed
,
sr
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment