Commit 0d0f0aba authored by Dhananjaya Jayashanka's avatar Dhananjaya Jayashanka

add text analyze and text analyze using NLTK

parent 5f7c9d88
import string
from collections import Counter
# import matplotlib.pyplot as plt
from nltk.corpus import stopwords
from nltk.sentiment.vader import SentimentIntensityAnalyzer
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import word_tokenize
text = open('read.txt', encoding='utf-8').read()
lower_case = text.lower()
cleaned_text = lower_case.translate(str.maketrans('', '', string.punctuation))
# Using word_tokenize because it's faster than split()
tokenized_words = word_tokenize(cleaned_text, "english")
# Removing Stop Words
final_words = []
for word in tokenized_words:
if word not in stopwords.words('english'):
final_words.append(word)
# Lemmatization - From plural to single + Base form of a word (example better-> good)
lemma_words = []
for word in final_words:
word = WordNetLemmatizer().lemmatize(word)
lemma_words.append(word)
emotion_list = []
with open('emotions.txt', 'r') as file:
for line in file:
clear_line = line.replace("\n", '').replace(",", '').replace("'", '').strip()
word, emotion = clear_line.split(':')
if word in lemma_words:
emotion_list.append(emotion)
print(emotion_list)
w = Counter(emotion_list)
print(w)
def sentiment_analyse(sentiment_text):
score = SentimentIntensityAnalyzer().polarity_scores(sentiment_text)
if score['neg'] > score['pos']:
print("Negative Sentiment")
elif score['neg'] < score['pos']:
print("Positive Sentiment")
else:
print("Neutral Sentiment")
sentiment_analyse(cleaned_text)
import string
from collections import Counter
# import matplotlib.pyplot as plt
# reading text file
text = open("read.txt", encoding="utf-8").read()
# converting to lowercase
lower_case = text.lower()
# Removing punctuations
cleaned_text = lower_case.translate(str.maketrans('', '', string.punctuation))
# splitting text into words
tokenized_words = cleaned_text.split()
stop_words = ["i", "me", "my", "myself", "we", "our", "ours", "ourselves", "you", "your", "yours", "yourself",
"yourselves", "he", "him", "his", "himself", "she", "her", "hers", "herself", "it", "its", "itself",
"they", "them", "their", "theirs", "themselves", "what", "which", "who", "whom", "this", "that", "these",
"those", "am", "is", "are", "was", "were", "be", "been", "being", "have", "has", "had", "having", "do",
"does", "did", "doing", "a", "an", "the", "and", "but", "if", "or", "because", "as", "until", "while",
"of", "at", "by", "for", "with", "about", "against", "between", "into", "through", "during", "before",
"after", "above", "below", "to", "from", "up", "down", "in", "out", "on", "off", "over", "under", "again",
"further", "then", "once", "here", "there", "when", "where", "why", "how", "all", "any", "both", "each",
"few", "more", "most", "other", "some", "such", "no", "nor", "not", "only", "own", "same", "so", "than",
"too", "very", "s", "t", "can", "will", "just", "don", "should", "now"]
# Removing stop words from the tokenized words list
final_words = []
for word in tokenized_words:
if word not in stop_words:
final_words.append(word)
emotion_list = []
with open('emotions.txt', 'r') as file:
for line in file:
clear_line = line.replace("\n", '').replace(",", '').replace("'", '').strip()
word, emotion = clear_line.split(':')
if word in final_words:
emotion_list.append(emotion)
print(emotion_list)
w = Counter(emotion_list)
print(w)
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment