Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
2
2021-060
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Chalika Mihiran
2021-060
Commits
ef0a6ffd
Commit
ef0a6ffd
authored
Jul 03, 2021
by
Dhananjaya Jayashanka
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added Video analyzing .py file
parent
7eb32364
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
72 additions
and
0 deletions
+72
-0
videoAnalyzing(expressions).py
videoAnalyzing(expressions).py
+72
-0
No files found.
videoAnalyzing(expressions).py
0 → 100644
View file @
ef0a6ffd
# from skimage import io
import
cv2
import
imutils
import
numpy
as
np
import
tensorflow
as
tf
from
tensorflow
import
keras
from
keras.preprocessing
import
image
from
keras.models
import
Sequential
,
load_model
from
keras.preprocessing.image
import
load_img
from
keras.preprocessing.image
import
img_to_array
import
matplotlib.pyplot
as
plt
Savedmodel
=
tf
.
keras
.
models
.
load_model
(
'./new model8.h5'
)
Savedmodel
.
summary
()
objects
=
(
'Angry'
,
'Disgust'
,
'Fear'
,
'Happy'
,
'Sad'
,
'Surprise'
,
'Neutral'
)
vid
=
cv2
.
VideoCapture
(
0
)
def
run
():
while
True
:
_
,
frame
=
vid
.
read
()
frame
=
imutils
.
resize
(
frame
,
width
=
500
)
# result = api(frame)
cv2
.
imshow
(
"frame"
,
frame
)
# getPrediction(frame)
# cv.waitKey(0)
if
cv2
.
waitKey
(
20
)
&
0XFF
==
ord
(
'q'
):
break
vid
.
release
()
cv2
.
destroyAllWindows
()
def
getPrediction
(
img
):
x
=
image
.
img_to_array
(
img
)
x
=
np
.
expand_dims
(
x
,
axis
=
0
)
x
/=
255
custom
=
Savedmodel
.
predict
(
x
)
# print(custom[0])
emotion_analysis
(
custom
[
0
])
x
=
np
.
array
(
x
,
'float32'
)
x
=
x
.
reshape
([
48
,
48
]);
# plt.gray()
# plt.show()
m
=
0.000000000000000000001
a
=
custom
[
0
]
for
i
in
range
(
0
,
len
(
a
)):
if
a
[
i
]
>
m
:
m
=
a
[
i
]
ind
=
i
print
(
'Expression Prediction:'
,
objects
[
ind
])
def
emotion_analysis
(
emotions
):
objects
=
[
'Angry'
,
'Disgust'
,
'Fear'
,
'Happy'
,
'Sad'
,
'Surprise'
,
'Neutral'
]
y_pos
=
np
.
arange
(
len
(
objects
))
plt
.
bar
(
y_pos
,
emotions
,
align
=
'center'
,
alpha
=
0.9
)
plt
.
tick_params
(
axis
=
'x'
,
which
=
'both'
,
pad
=
10
,
width
=
4
,
length
=
10
)
plt
.
xticks
(
y_pos
,
objects
)
plt
.
ylabel
(
'percentage'
)
plt
.
title
(
'emotion'
)
run
()
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment