Commit f808ffe9 authored by Dhananjaya Jayashanka's avatar Dhananjaya Jayashanka

Updated videoAnalyzing(expressions).py

parent 2751651f
# from skimage import io
import cv2
import imutils
import numpy as np
import tensorflow as tf
from tensorflow import keras
from keras.preprocessing import image
from keras.models import Sequential, load_model
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
import matplotlib.pyplot as plt
from skimage import io
import os
import cv2
import numpy as np
......@@ -19,24 +9,7 @@ Savedmodel.summary()
objects = ('Angry', 'Happy', 'Sad', 'Neutral')
vid = cv2.VideoCapture(0)
#
# def run():
# while True:
#
# _, frame = vid.read()
# frame = imutils.resize(frame, width=500)
#
# # result = api(frame)
#
# cv2.imshow("frame",frame)
# # getPrediction(frame)
#
# # cv.waitKey(0)
# if cv2.waitKey(20) & 0XFF == ord('q'):
# break
#
# vid.release()
# cv2.destroyAllWindows()
def emotion_analysis(emotions):
objects = ['Angry', 'Happy', 'Sad', 'Neutral']
y_pos = np.arange(len(objects))
......@@ -47,35 +20,7 @@ def emotion_analysis(emotions):
plt.title('emotion')
# def getPrediction(img):
#
# x = image.img_to_array(img)
# x = np.expand_dims(x, axis=0)
#
# x /= 255
#
# custom = Savedmodel.predict(x)
# # print(custom[0])
# emotion_analysis(custom[0])
#
# x = np.array(x, 'float32')
# x = x.reshape([48, 48]);
#
# plt.gray()
# plt.show()
#
# m = 0.000000000000000000001
# a = custom[0]
# for i in range(0, len(a)):
# if a[i] > m:
# m = a[i]
# ind = i
#
# print('Expression Prediction:', objects[ind])
imgdir='./speechVideo'
videoDir = './speechVideo'
cap = cv2.VideoCapture('./speechVideo/speech.mp4')
while(cap.isOpened()):
......@@ -108,7 +53,6 @@ while(cap.isOpened()):
if cv2.waitKey(20) & 0XFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment