Commit ed91952e authored by W.P.S.M wickramage's avatar W.P.S.M wickramage

Merge branch 'IT19242996' into 'master'

It19242996

See merge request !21
parents 44cf1f4f cd4ab252
{
"python.analysis.extraPaths": [
"./TravelTimePrediction/TrainData"
]
}
\ No newline at end of file
Dipature,Arrival,Time
Dehiwala,Fort ,25min
Dehiwala,wellawatte,5min
Dehiwala,bambalapitiya,9min
Dehiwala,kollupitiya,13min
Dehiwala,kompannavidiya,16min
wellawatte,bambalapitiya,4min
wellawatte,kollupitiya,8min
wellawatte,kompannavidiya,11min
wellawatte,Fort ,13min
bambalapitiya,kollupitiya,4min
bambalapitiya,kompannavidiya,7min
bambalapitiya,Fort ,9min
kollupitiya,kompannavidiya,3min
kollupitiya,Fort ,5min
kompannavidiya,Fort ,3min
Dehiwala,Fort ,25min
Dehiwala,wellawatte,5min
Dehiwala,bambalapitiya,9min
Dehiwala,kollupitiya,13min
Dehiwala,kompannavidiya,16min
wellawatte,bambalapitiya,4min
wellawatte,kollupitiya,8min
wellawatte,kompannavidiya,11min
wellawatte,Fort ,13min
bambalapitiya,kollupitiya,4min
bambalapitiya,kompannavidiya,7min
bambalapitiya,Fort ,9min
kollupitiya,kompannavidiya,3min
kollupitiya,Fort ,5min
kompannavidiya,Fort ,3min
Dehiwala,Fort ,25min
Dehiwala,wellawatte,5min
Dehiwala,bambalapitiya,9min
Dehiwala,kollupitiya,13min
Dehiwala,kompannavidiya,16min
wellawatte,bambalapitiya,4min
wellawatte,kollupitiya,8min
wellawatte,kompannavidiya,11min
wellawatte,Fort ,13min
bambalapitiya,kollupitiya,4min
bambalapitiya,kompannavidiya,7min
bambalapitiya,Fort ,9min
kollupitiya,kompannavidiya,3min
kollupitiya,Fort ,5min
kompannavidiya,Fort ,3min
Dehiwala,Fort ,25min
Dehiwala,wellawatte,5min
Dehiwala,bambalapitiya,9min
Dehiwala,kollupitiya,13min
Dehiwala,kompannavidiya,16min
wellawatte,bambalapitiya,4min
wellawatte,kollupitiya,8min
wellawatte,kompannavidiya,11min
wellawatte,Fort ,13min
bambalapitiya,kollupitiya,4min
bambalapitiya,kompannavidiya,7min
bambalapitiya,Fort ,9min
kollupitiya,kompannavidiya,3min
kollupitiya,Fort ,5min
kompannavidiya,Fort ,3min
Dehiwala,Fort ,25min
Dehiwala,wellawatte,5min
Dehiwala,bambalapitiya,9min
Dehiwala,kollupitiya,13min
Dehiwala,kompannavidiya,16min
wellawatte,bambalapitiya,4min
wellawatte,kollupitiya,8min
wellawatte,kompannavidiya,11min
wellawatte,Fort ,13min
bambalapitiya,kollupitiya,4min
bambalapitiya,kompannavidiya,7min
bambalapitiya,Fort ,9min
kollupitiya,kompannavidiya,3min
kollupitiya,Fort ,5min
kompannavidiya,Fort ,3min
Dehiwala,Fort ,25min
Dehiwala,wellawatte,5min
Dehiwala,bambalapitiya,9min
Dehiwala,kollupitiya,13min
Dehiwala,kompannavidiya,16min
wellawatte,bambalapitiya,4min
wellawatte,kollupitiya,8min
wellawatte,kompannavidiya,11min
wellawatte,Fort ,13min
bambalapitiya,kollupitiya,4min
bambalapitiya,kompannavidiya,7min
bambalapitiya,Fort ,9min
kollupitiya,kompannavidiya,3min
kollupitiya,Fort ,5min
kompannavidiya,Fort ,3min
Dehiwala,Fort ,25min
Dehiwala,wellawatte,5min
Dehiwala,bambalapitiya,9min
Dehiwala,kollupitiya,13min
Dehiwala,kompannavidiya,16min
wellawatte,bambalapitiya,4min
wellawatte,kollupitiya,8min
wellawatte,kompannavidiya,11min
wellawatte,Fort ,13min
bambalapitiya,kollupitiya,4min
bambalapitiya,kompannavidiya,7min
bambalapitiya,Fort ,9min
kollupitiya,kompannavidiya,3min
kollupitiya,Fort ,5min
kompannavidiya,Fort ,3min
Dehiwala,Fort ,25min
Dehiwala,wellawatte,5min
Dehiwala,bambalapitiya,9min
Dehiwala,kollupitiya,13min
Dehiwala,kompannavidiya,16min
wellawatte,bambalapitiya,4min
wellawatte,kollupitiya,8min
wellawatte,kompannavidiya,11min
wellawatte,Fort ,13min
bambalapitiya,kollupitiya,4min
bambalapitiya,kompannavidiya,7min
bambalapitiya,Fort ,9min
kollupitiya,kompannavidiya,3min
kollupitiya,Fort ,5min
kompannavidiya,Fort ,3min
Dehiwala,Fort ,25min
Dehiwala,wellawatte,5min
Dehiwala,bambalapitiya,9min
Dehiwala,kollupitiya,13min
Dehiwala,kompannavidiya,16min
wellawatte,bambalapitiya,4min
wellawatte,kollupitiya,8min
wellawatte,kompannavidiya,11min
wellawatte,Fort ,13min
bambalapitiya,kollupitiya,4min
bambalapitiya,kompannavidiya,7min
bambalapitiya,Fort ,9min
kollupitiya,kompannavidiya,3min
kollupitiya,Fort ,5min
kompannavidiya,Fort ,3min
Dehiwala,Fort ,25min
Dehiwala,wellawatte,5min
Dehiwala,bambalapitiya,9min
Dehiwala,kollupitiya,13min
Dehiwala,kompannavidiya,16min
wellawatte,bambalapitiya,4min
wellawatte,kollupitiya,8min
wellawatte,kompannavidiya,11min
wellawatte,Fort ,13min
bambalapitiya,kollupitiya,4min
bambalapitiya,kompannavidiya,7min
bambalapitiya,Fort ,9min
kollupitiya,kompannavidiya,3min
kollupitiya,Fort ,5min
kompannavidiya,Fort ,3min
Dehiwala 1
wellawatte 2
bambalapitiya 3
kollupitiya 4
kompannavidiya 5
Fort 6
This diff is collapsed.
# %%
import pandas as pd
# %%
data = pd.read_csv('TravelTimePrediction\TrainData\TrainData.csv')
# %%
# %%
# %%
# %%
data['Dipature'].map({'Dehiwala':1,'wellawatte':2,'bambalapitiya':3,'kollupitiya':4,'kompannavidiya':5})
# %%
data['Dipature'] = data['Dipature'].map({'Dehiwala':1,'wellawatte':2,'bambalapitiya':3,'kollupitiya':4,'kompannavidiya':5})
# %%
# %%
data['Arrival'].map({'Fort ':6,'wellawatte':2,'bambalapitiya':3,'kollupitiya':4,'kompannavidiya':5})
# %%
data['Arrival'] = data['Arrival'].map({'Fort ':6,'wellawatte':2,'bambalapitiya':3,'kollupitiya':4,'kompannavidiya':5})
# %%
# %%
X = data.drop(['Time'],axis=1)
# %%
y = data['Time']
# %%
from sklearn.model_selection import train_test_split
# %%
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42)
# %%
from sklearn.neural_network import MLPClassifier
# %%
NN = MLPClassifier()
NN.fit(X_train,y_train)
# %%
y_pred1 = NN.predict(X_test)
# %%
df1 = pd.DataFrame({'Actual':y_test, 'NN Results':y_pred1})
# %%
data = {'Dipature':1,
'Arrival':2,
}
df = pd.DataFrame(data,index=[0])
# %%
predit = NN.predict(df)
# %%
def GetTrainPrediction(Dipature,Arrival):
data = {'Dipature':Dipature,
'Arrival':Arrival,
}
df = pd.DataFrame(data,index=[0])
predit = NN.predict(df)
print('Train Travel Time Prediction :- ',*predit,' ')
# %%
def GetDipatureCode(data):
if('Dehiwala' == data):
return 1
elif('wellawatte' == data):
return 2
elif('bambalapitiya' == data):
return 3
elif('kollupitiya' == data):
return 4
elif('kompannavidiya' == data):
return 5
# %%
def GetArrivalCode(data):
if('Fort' == data):
return 6
elif('wellawatte' == data):
return 2
elif('bambalapitiya' == data):
return 3
elif('kollupitiya' == data):
return 4
elif('kompannavidiya' == data):
return 5
# %%
def GetPrediction(Dvalue,Avalue):
Dipature = GetDipatureCode(Dvalue)
Arrival = GetArrivalCode(Avalue)
GetTrainPrediction(Dipature,Arrival)
GetPrediction('Dehiwala','Fort')
\ No newline at end of file
......@@ -1668,7 +1668,7 @@
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "26de051ba29f2982a8de78e945f0abaf191376122a1563185a90213a26c5da77"
"hash": "5cf8c3d3e58a91b903f819a9c98dd2220f70e367ec47969cb612bf546ce9e823"
}
}
},
......
......@@ -2,7 +2,7 @@
import pandas as pd
# %%
data = pd.read_csv('BusTravelData.csv')
data = pd.read_csv('TravelTimePrediction\BusTravelData.csv')
# %%
......@@ -180,6 +180,8 @@ def GetDateCode(date):
import testingWeather
city = "malabe"
city = city+" weather"
......@@ -187,7 +189,7 @@ time= 6 #this time come from semins data/member of route planning
day ='Friday' #date come from UI
date = GetDateCode(day)
special = 0 # Special Day or Not 1/0
Congestion= 8 # This is depend on the depature time---- heavy traffic =9 / No Traffic = 0
Congestion= 8 # This is come from TomTOm API / APK app
drivingspeedAVG = 40 #this is come from GPS data
stops =14 #total Bus stops/holts between the travel --- data come from the Seminas data/member of route planning
weather =testingWeather.weather(city) #Get weather in travel area
......@@ -198,5 +200,17 @@ GetPrediction(time,date,special,Congestion,drivingspeedAVG,stops,weather,Distanc
# Get Train Data
# import sys
# adding Folder_2/subfolder to the system path
# sys.path.insert(0, 'TravelTimePrediction\TrainData')
# importing the hello
# from TrainTimePrediction import GetPrediction
# GetPrediction('Dehiwala','Fort')
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment