Update demo.py

parent fe838920
import cv2 jh/)gjrjjhٚhX*e֬[gz
import numpy as np \ No newline at end of file
import matplotlib.pyplot as plt
net = cv2.dnn.readNetFromDarknet("yolov3_training.cfg",r"yolov3_training_10000.weights")
# Name custom object
classes = ["Car","Van","Number Plate","Bicycle","MotorCycles","Lorry","HeavyLorry","Bus","Hand Tractors","Land Vehicle","JCB","Threewheel"]
cap = cv2.VideoCapture("vehicle3.asf")
while 1:
_, img = cap.read()
img = cv2.resize(img,(1280,720))
hight,width,_ = img.shape
blob = cv2.dnn.blobFromImage(img, 1/255,(416,416),(0,0,0),swapRB = True,crop= False)
net.setInput(blob)
output_layers_name = net.getUnconnectedOutLayersNames()
layerOutputs = net.forward(output_layers_name)
boxes =[]
confidences = []
class_ids = []
for output in layerOutputs:
for detection in output:
score = detection[5:]
class_id = np.argmax(score)
confidence = score[class_id]
if confidence > 0.7:
center_x = int(detection[0] * width)
center_y = int(detection[1] * hight)
w = int(detection[2] * width)
h = int(detection[3] * hight)
x = int(center_x - w/2)
y = int(center_y - h/2)
boxes.append([x,y,w,h])
confidences.append((float(confidence)))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes,confidences,.5,.4)
boxes =[]
confidences = []
class_ids = []
for output in layerOutputs:
for detection in output:
score = detection[5:]
class_id = np.argmax(score)
confidence = score[class_id]
if confidence > 0.5:
center_x = int(detection[0] * width)
center_y = int(detection[1] * hight)
w = int(detection[2] * width)
h = int(detection[3]* hight)
x = int(center_x - w/2)
y = int(center_y - h/2)
boxes.append([x,y,w,h])
confidences.append((float(confidence)))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes,confidences,.8,.4)
font = cv2.FONT_HERSHEY_PLAIN
colors = np.random.uniform(0,255,size =(len(boxes),3))
if len(indexes)>0:
for i in indexes.flatten():
x,y,w,h = boxes[i]
label = str(classes[class_ids[i]])
confidence = str(round(confidences[i],2))
color = colors[i]
cv2.rectangle(img,(x,y),(x+w,y+h),color,2)
cv2.putText(img,label + " " + confidence, (x,y+400),font,2,color,2)
cv2.imshow('img',img)
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment