Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
2
2020-101
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Sachith Fernando
2020-101
Commits
08f6d91b
Commit
08f6d91b
authored
Jan 08, 2021
by
LiniEisha
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Integration
parent
579334b8
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
124 additions
and
77 deletions
+124
-77
LectureSummarizingApp/api.py
LectureSummarizingApp/api.py
+42
-8
LectureSummarizingApp/noise.py
LectureSummarizingApp/noise.py
+57
-63
LectureSummarizingApp/noiseRemove.py
LectureSummarizingApp/noiseRemove.py
+1
-1
LectureSummarizingApp/templates/LectureSummarizingApp/summarization.html
...ingApp/templates/LectureSummarizingApp/summarization.html
+24
-5
No files found.
LectureSummarizingApp/api.py
View file @
08f6d91b
from
rest_framework.views
import
APIView
from
rest_framework.response
import
Response
from
FirstApp.logic.id_generator
import
generate_new_id
from
LectureSummarizingApp.models
import
LectureAudio
,
LectureAudioNoiseRemoved
,
LectureSpeechToText
,
\
LectureAudioSummary
,
LectureNotices
from
LectureSummarizingApp.serializer
import
LectureAudioSerializer
,
LectureAudioNoiseRemovedSerializer
,
\
...
...
@@ -9,8 +10,13 @@ from LectureSummarizingApp.serializer import LectureAudioSerializer, LectureAudi
from
.
import
speech_to_text
as
stt
from
.
import
noiseRemove
as
nr
import
datetime
# APIs used in Lecture Summarizing Component
from
.noise
import
noise_removal
class
LectureAudioAPI
(
APIView
):
def
get
(
self
,
request
):
...
...
@@ -22,9 +28,36 @@ class LectureAudioAPI(APIView):
class
audioNoiseRemovedList
(
APIView
):
def
get
(
self
,
request
):
lecture_audio_noise_removed
=
LectureAudioNoiseRemoved
.
objects
.
all
()
serializer
=
LectureAudioNoiseRemovedSerializer
(
lecture_audio_noise_removed
,
many
=
True
)
return
Response
(
serializer
.
data
)
# lecture_audio_noise_removed = LectureAudioNoiseRemoved.objects.all()
# serializer = LectureAudioNoiseRemovedSerializer(lecture_audio_noise_removed, many=True)
audio_noise_removed_list
=
LectureAudioNoiseRemoved
.
objects
.
order_by
(
'lecture_audio_noise_removed_id'
)
.
last
()
audio_name
=
request
.
query_params
.
get
(
"audio_name"
)
id
=
int
(
request
.
query_params
.
get
(
"id"
))
current_date
=
datetime
.
datetime
.
now
()
.
date
()
fake_duration
=
datetime
.
timedelta
(
minutes
=
2
,
seconds
=
10
,
milliseconds
=
00
)
# generate new id for audio noise removed
new_audio_noise_removed_id
=
generate_new_id
(
audio_noise_removed_list
.
lecture_audio_noise_removed_id
)
# nr.noise_removalll(video_name)
noise_removal
(
audio_name
)
LectureAudioNoiseRemoved
(
lecture_audio_noise_removed_id
=
new_audio_noise_removed_id
,
lecture_audio_id_id
=
id
,
lecturer_date
=
current_date
,
lecture_audio_name
=
audio_name
,
lecture_audio_length
=
fake_duration
)
.
save
()
return
Response
({
"response"
:
Response
.
status_code
})
def
post
(
self
,
request
):
LectureAudioNoiseRemoved
(
...
...
@@ -44,11 +77,12 @@ class audioToTextList(APIView):
serializer
=
LectureSpeechToTextSerializer
(
lecture_speech_to_text_id
,
many
=
True
)
# return Response(serializer.data)
video_name
=
request
.
query_params
.
get
(
"video_name"
)
print
(
'video name: '
,
video_name
)
nr
.
noise_removal
(
video_name
)
# video_name = request.query_params.get("video_name")
#
# print('video name: ', video_name)
#
# # nr.noise_removalll(video_name)
# noise_removal(video_name)
# stt.speech_to_text(video_name)
...
...
LectureSummarizingApp/noise.py
View file @
08f6d91b
import
librosa
from
pysndfx
import
AudioEffectsChain
import
python_speech_features
import
os
def
noise_removal
(
video_name
):
def
read_file
(
file_name
):
sample_file
=
file_name
sample_directory
=
'lectures/'
sample_path
=
sample_directory
+
sample_file
# sample_file = file_name
# sample_directory = 'lectures/'
# sample_path = sample_directory + sample_file
BASE_DIR
=
os
.
path
.
dirname
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
)))
LECTURE_VIDEO_DIR
=
os
.
path
.
join
(
BASE_DIR
,
"LectureSummarizingApp
\\
lectures
\\
{}"
.
format
(
video_name
))
print
(
'lecture audio directory: '
,
LECTURE_VIDEO_DIR
)
# DESTINATION_DIR = os.path.join(BASE_DIR, "LectureSummarizingApp\\noise_removed_lectures")
DESTINATION_DIR
=
os
.
path
.
dirname
(
os
.
path
.
join
(
BASE_DIR
,
"LectureSummarizingApp
\\
noise_removed_lectures
\\
sample.txt"
))
print
(
'destination directory: '
,
DESTINATION_DIR
)
# generating audio time series and a sampling rate (int)
a
,
sr
=
librosa
.
load
(
sample_path
)
a
,
sr
=
librosa
.
load
(
path
=
LECTURE_VIDEO_DIR
)
print
(
'a: '
,
a
)
print
(
'sr: '
,
sr
)
# speech_boosted = mffc_highshelf(a, sr)
output_file
(
destination
=
DESTINATION_DIR
,
filename
=
video_name
,
a
=
a
,
sr
=
sr
)
return
a
,
sr
...
...
@@ -24,6 +41,7 @@ def mffc_highshelf(a, sr):
mfcc
=
python_speech_features
.
base
.
logfbank
(
a
)
mfcc
=
python_speech_features
.
base
.
lifter
(
mfcc
)
sum_of_squares
=
[]
index
=
-
1
for
r
in
mfcc
:
...
...
@@ -40,73 +58,49 @@ def mffc_highshelf(a, sr):
speech_booster
=
AudioEffectsChain
()
.
highshelf
(
frequency
=
min_hz
*
(
-
1
)
*
1.2
,
gain
=-
12.0
,
slope
=
0.6
)
.
limiter
(
gain
=
8.0
)
a_speach_boosted
=
speech_booster
(
a
)
# a_speach_boosted = speech_booster.
return
(
a_speach_boosted
)
def
mfcc_lowshelf
(
a
,
sr
):
mfcc
=
python_speech_features
.
base
.
mfcc
(
a
)
mfcc
=
python_speech_features
.
base
.
logfbank
(
a
)
mfcc
=
python_speech_features
.
base
.
lifter
(
mfcc
)
sum_of_squares
=
[]
index
=
-
1
for
x
in
mfcc
:
sum_of_squares
.
append
(
0
)
index
=
index
+
1
for
n
in
x
:
sum_of_squares
[
index
]
=
sum_of_squares
[
index
]
+
n
**
2
strongest_frame
=
sum_of_squares
.
index
(
max
(
sum_of_squares
))
hz
=
python_speech_features
.
base
.
mel2hz
(
mfcc
[
strongest_frame
])
max_hz
=
max
(
hz
)
min_hz
=
min
(
hz
)
speech_booster
=
AudioEffectsChain
()
.
lowshelf
(
frequency
=
min_hz
*
(
-
1
),
gain
=
12.0
,
slope
=
0.5
)
a_speach_boosted
=
speech_booster
(
a
)
return
(
a_speach_boosted
)
def
trim_silence
(
y
):
a_trimmed
,
index
=
librosa
.
effects
.
trim
(
y
,
top_db
=
20
,
frame_length
=
2
,
hop_length
=
500
)
trimmed_length
=
librosa
.
get_duration
(
y
)
-
librosa
.
get_duration
(
a_trimmed
)
return
a_trimmed
,
trimmed_length
# def trim_silence(y):
# a_trimmed, index = librosa.effects.trim(y, top_db=20, frame_length=2, hop_length=500)
# trimmed_length = librosa.get_duration(y) - librosa.get_duration(a_trimmed)
#
# return a_trimmed, trimmed_length
def
enhance
(
y
):
apply_audio_effects
=
AudioEffectsChain
()
.
lowshelf
(
gain
=
10.0
,
frequency
=
260
,
slope
=
0.1
)
.
reverb
(
reverberance
=
25
,
hf_damping
=
5
,
room_scale
=
5
,
stereo_depth
=
50
,
pre_delay
=
20
,
wet_gain
=
0
,
wet_only
=
False
)
#.normalize()
a_enhanced
=
apply_audio_effects
(
y
)
return
a_enhanced
#
def enhance(y):
#
apply_audio_effects = AudioEffectsChain().lowshelf(gain=10.0, frequency=260, slope=0.1).reverb(reverberance=25, hf_damping=5, room_scale=5, stereo_depth=50, pre_delay=20, wet_gain=0, wet_only=False)#.normalize()
#
a_enhanced = apply_audio_effects(y)
#
#
return a_enhanced
def
output_file
(
destination
,
filename
,
a
,
sr
,
ext
=
""
):
destination
=
destination
+
filename
[:
-
4
]
+
ext
+
'.wav'
librosa
.
output
.
write_wav
(
destination
,
a
,
sr
)
lectures
=
[
'Lecture01
.wav'
]
for
s
in
lectures
:
filename
=
s
a
,
sr
=
read_file
(
filename
)
# a_reduced_centroid_s = reduce_noise_centroid_s(a, sr)
a_reduced_mfcc_lowshelf
=
mfcc_lowshelf
(
a
,
sr
)
a_reduced_mfcc_highshelf
=
mffc_highshelf
(
a
,
sr
)
# trimming silences
# a_reduced_centroid_s, time_trimmed = trim_silence(a_reduced_centroid_s)
a_reduced_mfcc_up
,
time_trimmed
=
trim_silence
(
mfcc_lowshelf
)
a_reduced_mfcc_down
,
time_trimmed
=
trim_silence
(
mffc_highshelf
)
# output_file('lectures_trimmed_noise_reduced/' ,filename, y_reduced_centroid_s, sr, '_ctr_s')
output_file
(
'lectures_trimmed_noise_reduced/'
,
filename
,
a_reduced_mfcc_up
,
sr
,
'_mfcc_up'
)
#
output_file('lectures_trimmed_noise_reduced/' ,filename, a_reduced_mfcc_down, sr, '_mfcc_down')
# output_file('lectures_trimmed_noise_reduced/' ,filename, a, sr, '_org')
# lectures = ['Lecture01.wav', 'Lecture02
.wav']
#
for s in lectures:
#
filename = s
# a, sr = noise_removal
(filename)
#
#
#
# a_reduced_centroid_s = reduce_noise_centroid_s(a, sr)
# #
a_reduced_mfcc_lowshelf = mfcc_lowshelf(a, sr)
#
a_reduced_mfcc_highshelf = mffc_highshelf(a, sr)
#
#
#
# trimming silences
#
# a_reduced_centroid_s, time_trimmed = trim_silence(a_reduced_centroid_s)
# #
a_reduced_mfcc_up, time_trimmed = trim_silence(mfcc_lowshelf)
#
a_reduced_mfcc_down, time_trimmed = trim_silence(mffc_highshelf)
#
#
#
#
# output_file('lectures_trimmed_noise_reduced/' ,filename, y_reduced_centroid_s, sr, '_ctr_s')
# #
output_file('lectures_trimmed_noise_reduced/' ,filename, a_reduced_mfcc_up, sr, '_mfcc_up')
#
output_file('lectures_trimmed_noise_reduced/' ,filename, a_reduced_mfcc_down, sr, '_mfcc_down')
#
# output_file('lectures_trimmed_noise_reduced/' ,filename, a, sr, '_org')
LectureSummarizingApp/noiseRemove.py
View file @
08f6d91b
...
...
@@ -8,7 +8,7 @@ import os
#get_ipython().magic('matplotlib inline')
def
noise_removal
(
video_name
):
def
noise_removal
ll
(
video_name
):
BASE_DIR
=
os
.
path
.
dirname
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
)))
LECTURE_VIDEO_DIR
=
os
.
path
.
join
(
BASE_DIR
,
"LectureSummarizingApp
\\
lectures
\\
{}"
.
format
(
video_name
))
...
...
LectureSummarizingApp/templates/LectureSummarizingApp/summarization.html
View file @
08f6d91b
...
...
@@ -48,18 +48,37 @@
});
<!--
background
noise
-->
$
(
'
.audio_process
'
).
click
(
function
()
{
alert
(
'
Processing
'
);
$
(
'
.audio_process
'
).
click
(
function
(
e
)
{
let
id
=
e
.
target
.
parentNode
.
parentNode
.
getAttribute
(
'
id
'
);
let
audio_name
=
e
.
target
.
parentNode
.
parentNode
.
getAttribute
(
'
data-audio-name
'
);
audio_name
=
audio_name
+
"
.wav
"
;
alert
(
'
id:
'
+
id
);
alert
(
'
audio name:
'
+
audio_name
);
//call the fetch API
fetch
(
'
http://127.0.0.1:8000/summary/lecture-audio-to-text/?video_name=Lecture01.wav
'
)
<!--
fetch
(
'
http://127.0.0.1:8000/summary/lecture-audio-to-text/?audio_name=
'
)
-->
<!--
.
then
((
res
)
=>
res
.
json
())
-->
<!--
.
then
((
out
)
=>
alert
(
out
.
response
))
-->
<!--
.
catch
((
err
)
=>
alert
(
'
error:
'
+
err
))
-->
fetch
(
'
http://127.0.0.1:8000/summary/lecture-audio-noise-removed/?audio_name=
'
+
audio_name
+
'
&id=
'
+
id
)
.
then
((
res
)
=>
res
.
json
())
.
then
((
out
)
=>
alert
(
out
.
response
))
.
then
((
out
)
=>
handleNoiseRemoved
(
out
.
response
))
.
catch
((
err
)
=>
alert
(
'
error:
'
+
err
))
});
//this function will handle the success respopnse for noise removed
function
handleNoiseRemoved
(
response
)
{
if
(
response
===
200
)
{
document
.
location
.
reload
();
}
}
<!--
To
summary
-->
$
(
'
.to_summary
'
).
click
(
function
()
{
alert
(
'
Processing
'
);
...
...
@@ -121,7 +140,7 @@
<tbody>
{% for lec_audio in lec_audio_data %}
<tr
class=
"recordings not_clicked"
id=
"{{ lec_audio.
lecture_audio_id
}}"
>
<tr
class=
"recordings not_clicked"
id=
"{{ lec_audio.
id }}"
data-audio-name=
"{{ lec_audio.lecture_audio_name
}}"
>
<!-- <td>-->
<!-- <div class="radio">-->
<!-- <label><input type="radio"-->
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment