Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
2
2020-101
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Sachith Fernando
2020-101
Commits
3e85b92f
Commit
3e85b92f
authored
Jan 10, 2021
by
I.K Seneviratne
Browse files
Options
Browse Files
Download
Plain Diff
Merge remote-tracking branch 'origin/QA_RELEASE' into monitoring_student_behavior_IT17138000
parents
110d8995
c217af8f
Changes
15
Hide whitespace changes
Inline
Side-by-side
Showing
15 changed files
with
498 additions
and
276 deletions
+498
-276
AttendanceApp/camera.py
AttendanceApp/camera.py
+1
-1
AttendanceApp/templates/AttendanceApp/Initiate_Lecture.html
AttendanceApp/templates/AttendanceApp/Initiate_Lecture.html
+7
-0
AttendanceApp/test.py
AttendanceApp/test.py
+1
-1
FirstApp/templates/FirstApp/template.html
FirstApp/templates/FirstApp/template.html
+2
-2
LectureSummarizingApp/ExtractKeySentences.py
LectureSummarizingApp/ExtractKeySentences.py
+57
-16
LectureSummarizingApp/Summary.py
LectureSummarizingApp/Summary.py
+84
-42
LectureSummarizingApp/Voice Recorder.py
LectureSummarizingApp/Voice Recorder.py
+26
-15
LectureSummarizingApp/api.py
LectureSummarizingApp/api.py
+101
-24
LectureSummarizingApp/noise.py
LectureSummarizingApp/noise.py
+32
-64
LectureSummarizingApp/noiseRemove.py
LectureSummarizingApp/noiseRemove.py
+41
-32
LectureSummarizingApp/speech_to_text.py
LectureSummarizingApp/speech_to_text.py
+10
-4
LectureSummarizingApp/templates/LectureSummarizingApp/RecordLecture.html
...ingApp/templates/LectureSummarizingApp/RecordLecture.html
+54
-54
LectureSummarizingApp/templates/LectureSummarizingApp/summarization.html
...ingApp/templates/LectureSummarizingApp/summarization.html
+78
-17
LectureSummarizingApp/urls.py
LectureSummarizingApp/urls.py
+3
-3
LectureSummarizingApp/views.py
LectureSummarizingApp/views.py
+1
-1
No files found.
AttendanceApp/camera.py
View file @
3e85b92f
...
...
@@ -23,7 +23,7 @@ maskNet = load_model(os.path.join(settings.BASE_DIR,'face_detector/mask_detector
class
IPWebCam
(
object
):
def
__init__
(
self
):
self
.
url
=
"http://192.168.8.10
3
:8080/shot.jpg"
self
.
url
=
"http://192.168.8.10
0
:8080/shot.jpg"
def
__del__
(
self
):
cv2
.
destroyAllWindows
()
...
...
AttendanceApp/templates/AttendanceApp/Initiate_Lecture.html
View file @
3e85b92f
...
...
@@ -55,6 +55,13 @@ function testAPI() {
.
then
((
out
)
=>
{})
.
catch
((
err
)
=>
alert
(
'
error:
'
+
err
));
//audio
var
audio_name
=
'
Lecture
'
;
fetch
(
'
http://127.0.0.1:8000/summary/lecture-audio/?audio_name=
'
+
audio_name
)
then
((
res
)
=>
res
.
json
())
.
then
((
out
)
=>
{})
.
catch
((
err
)
=>
alert
(
'
error:
'
+
err
));
}
var
time
=
'
time
'
;
function
f
()
{
...
...
AttendanceApp/test.py
View file @
3e85b92f
...
...
@@ -12,7 +12,7 @@ def IPWebcamTest():
# Replace the URL with your own IPwebcam shot.jpg IP:port
# url = 'http://192.168.2.35:8080/shot.jpg'
url
=
'http://192.168.8.10
3
:8080/shot.jpg'
url
=
'http://192.168.8.10
0
:8080/shot.jpg'
# url = 'http://192.168.1.11:8080/startvideo?force=1&tag=rec'
# url = 'http://192.168.1.11:8080/stopvideo?force=1'
...
...
FirstApp/templates/FirstApp/template.html
View file @
3e85b92f
...
...
@@ -118,7 +118,7 @@
<div
id=
"collapseThree"
class=
"collapse"
aria-labelledby=
"headingThree"
data-parent=
"#accordionSidebar"
>
<div
class=
"bg-white py-2 collapse-inner rounded"
>
<h6
class=
"collapse-header"
>
Components:
</h6>
<a
class=
"collapse-item"
href=
"/summary/record"
>
Record Lecture
</a
>
<!-- <a class="collapse-item" href="/summary/record">Record Lecture</a>--
>
<a
class=
"collapse-item"
href=
"/summary/lecture"
>
Summarization
</a>
</div>
</div>
...
...
@@ -174,7 +174,7 @@
<div
class=
"bg-white py-2 collapse-inner rounded"
>
<!-- <h6 class="collapse-header">Login Screens:</h6>-->
<a
class=
"collapse-item"
href=
"/lecturer"
>
Dashboard
</a>
<a
class=
"collapse-item"
href=
"/lecturer/lecture-video"
>
Video Page
</a>
<a
class=
"collapse-item"
href=
"/lecturer/lecture-video"
>
Audio analysis Key-words.
</a>
</div>
</div>
...
...
LectureSummarizingApp/ExtractKeySentences.py
View file @
3e85b92f
import
nltk
read_lines
=
[
line
.
rstrip
(
'
\n
'
)
for
line
in
open
(
"audioToText01.txt"
,
"r"
)]
sentences_list
=
[]
sentence_list
=
nltk
.
sent_tokenize
(
read_lines
)
word_search
=
"important"
sentences_with_word
=
[]
for
sentence
in
sentences_list
:
if
sentence
.
count
(
word_search
)
>
0
:
sentences_with_word
.
append
(
sentence
)
words_search
=
[
"exam"
,
"assignment"
]
word_sentence_dictionary
=
{
"exam"
:[],
"assignment"
:[]}
for
word
in
words_search
:
import
os
from
fpdf
import
FPDF
def
LectureNotice
(
notice_name
):
BASE_DIR
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
FILE_PATH
=
os
.
path
.
join
(
BASE_DIR
,
"speechToText
\\
{}"
.
format
(
notice_name
))
DESTINATION_DIR
=
os
.
path
.
join
(
BASE_DIR
,
"notices
\\
Notice_{}"
.
format
(
notice_name
))
print
(
'destination directory: '
,
DESTINATION_DIR
)
text
=
''
read_lines
=
[
line
.
rstrip
(
'
\n
'
)
for
line
in
open
(
FILE_PATH
,
"r"
)]
sentences_list
=
[]
sentence_list
=
nltk
.
sent_tokenize
(
read_lines
)
word_search
=
"important"
sentences_with_word
=
[]
for
sentence
in
sentence
s
_list
:
if
sentence
.
count
(
word
)
>
0
:
for
sentence
in
sentence_list
:
if
sentence
.
count
(
word
_search
)
>
0
:
sentences_with_word
.
append
(
sentence
)
word_sentence_dictionary
[
word
]
=
sentences_with_word
\ No newline at end of file
words_search
=
[
"exam"
,
"assignment"
]
word_sentence_dictionary
=
{
"exam"
:[],
"assignment"
:[]}
for
word
in
words_search
:
sentences_with_word
=
[]
for
sentence
in
sentences_list
:
if
sentence
.
count
(
word
)
>
0
:
sentences_with_word
.
append
(
sentence
)
word_sentence_dictionary
[
word
]
=
sentences_with_word
file
=
open
(
'DESTINATION_DIR'
,
'w'
)
file
.
close
()
# def SaveNotices():
BASE_DIR
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
# PDF_DESTINATION_DIR = os.path.dirname(os.path.join(BASE_DIR, "summaryPDF\\sample.txt"))
PDF_DESTINATION_DIR
=
os
.
path
.
join
(
BASE_DIR
,
"noticePDF
\\
Notice{}.pdf"
.
format
(
notice_name
))
pdf
=
FPDF
()
# Add a page
pdf
.
add_page
()
# set style and size of font
# that you want in the pdf
pdf
.
set_font
(
"Arial"
,
size
=
15
)
# open the text file in read mode
f
=
open
(
"DESTINATION_DIR"
,
"r"
)
# insert the texts in pdf
for
x
in
f
:
pdf
.
cell
(
200
,
10
,
txt
=
x
,
ln
=
1
,
align
=
'C'
)
# save the pdf with name .pdf
pdf
.
output
(
"PDF_DESTINATION_DIR"
)
return
text
\ No newline at end of file
LectureSummarizingApp/Summary.py
View file @
3e85b92f
from
spacy.lang.pt.stop_words
import
STOP_WORDS
from
sklearn.feature_extraction.text
import
CountVectorizer
import
pt_core_news_sm
import
os
from
fpdf
import
FPDF
def
LectureSummary
(
summary_name
):
BASE_DIR
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
FILE_PATH
=
os
.
path
.
join
(
BASE_DIR
,
"speechToText
\\
{}"
.
format
(
summary_name
))
DESTINATION_DIR
=
os
.
path
.
join
(
BASE_DIR
,
"summary
\\
Summary_{}"
.
format
(
summary_name
))
print
(
'destination directory: '
,
DESTINATION_DIR
)
# Reading the file
nlp
=
pt_core_news_sm
.
load
()
with
open
(
"audioToText01.txt"
,
"r"
,
encoding
=
"utf-8"
)
as
f
:
text
=
" "
.
join
(
f
.
readlines
())
nlp
=
pt_core_news_sm
.
load
()
# file = open(DESTINATION_DIR, 'w')
text
=
''
with
open
(
FILE_PATH
,
"r"
,
encoding
=
"utf-8"
)
as
f
:
text
=
" "
.
join
(
f
.
readlines
())
doc
=
nlp
(
text
)
doc
=
nlp
(
text
)
#calculating the word frequency
corpus
=
[
sent
.
text
.
lower
()
for
sent
in
doc
.
sents
]
cv
=
CountVectorizer
(
stop_words
=
list
(
STOP_WORDS
))
cv_fit
=
cv
.
fit_transform
(
corpus
)
word_list
=
cv
.
get_feature_names
()
count_list
=
cv_fit
.
toarray
()
.
sum
(
axis
=
0
)
word_frequency
=
dict
(
zip
(
word_list
,
count_list
))
val
=
sorted
(
word_frequency
.
values
())
higher_word_frequencies
=
[
word
for
word
,
freq
in
word_frequency
.
items
()
if
freq
in
val
[
-
3
:]]
print
(
"
\n
Words with higher frequencies: "
,
higher_word_frequencies
)
# gets relative frequency of words
higher_frequency
=
val
[
-
1
]
for
word
in
word_frequency
.
keys
():
word_frequency
[
word
]
=
(
word_frequency
[
word
]
/
higher_frequency
)
corpus
=
[
sent
.
text
.
lower
()
for
sent
in
doc
.
sents
]
cv
=
CountVectorizer
(
stop_words
=
list
(
STOP_WORDS
))
cv_fit
=
cv
.
fit_transform
(
corpus
)
word_list
=
cv
.
get_feature_names
()
count_list
=
cv_fit
.
toarray
()
.
sum
(
axis
=
0
)
word_frequency
=
dict
(
zip
(
word_list
,
count_list
))
val
=
sorted
(
word_frequency
.
values
())
higher_word_frequencies
=
[
word
for
word
,
freq
in
word_frequency
.
items
()
if
freq
in
val
[
-
3
:]]
print
(
"
\n
Words with higher frequencies: "
,
higher_word_frequencies
)
# gets relative frequency of words
higher_frequency
=
val
[
-
1
]
for
word
in
word_frequency
.
keys
():
word_frequency
[
word
]
=
(
word_frequency
[
word
]
/
higher_frequency
)
#calculating sentence rank and taking top ranked sentences for the summary
sentence_rank
=
{}
for
sent
in
doc
.
sents
:
for
word
in
sent
:
if
word
.
text
.
lower
()
in
word_frequency
.
keys
():
if
sent
in
sentence_rank
.
keys
():
sentence_rank
[
sent
]
+=
word_frequency
[
word
.
text
.
lower
()]
else
:
sentence_rank
[
sent
]
=
word_frequency
[
word
.
text
.
lower
()]
top_sentences
=
(
sorted
(
sentence_rank
.
values
())[::
-
1
])
top_sent
=
top_sentences
[:
3
]
summary
=
[]
for
sent
,
strength
in
sentence_rank
.
items
():
if
strength
in
top_sent
:
summary
.
append
(
sent
)
else
:
continue
for
i
in
summary
:
file
=
open
(
'Summary01.txt'
,
'w'
)
file
.
write
(
str
(
i
))
file
.
close
()
\ No newline at end of file
sentence_rank
=
{}
for
sent
in
doc
.
sents
:
for
word
in
sent
:
if
word
.
text
.
lower
()
in
word_frequency
.
keys
():
if
sent
in
sentence_rank
.
keys
():
sentence_rank
[
sent
]
+=
word_frequency
[
word
.
text
.
lower
()]
else
:
sentence_rank
[
sent
]
=
word_frequency
[
word
.
text
.
lower
()]
top_sentences
=
(
sorted
(
sentence_rank
.
values
())[::
-
1
])
top_sent
=
top_sentences
[:
3
]
summary
=
[]
for
sent
,
strength
in
sentence_rank
.
items
():
if
strength
in
top_sent
:
summary
.
append
(
sent
)
else
:
continue
file
=
None
for
i
in
summary
:
file
=
open
(
DESTINATION_DIR
,
'w'
)
# file = open('Summary01.txt', 'w')
file
.
write
(
str
(
i
))
file
.
close
()
# def SaveSummary():
BASE_DIR
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
# PDF_DESTINATION_DIR = os.path.dirname(os.path.join(BASE_DIR, "summaryPDF\\sample.txt"))
PDF_DESTINATION_DIR
=
os
.
path
.
join
(
BASE_DIR
,
"summaryPDF
\\
Summary_PDF_{}.pdf"
.
format
(
summary_name
))
pdf
=
FPDF
()
# Add a page
pdf
.
add_page
()
# set style and size of font
# that you want in the pdf
pdf
.
set_font
(
"Arial"
,
size
=
15
)
# open the text file in read mode
f
=
open
(
DESTINATION_DIR
,
"r"
)
# insert the texts in pdf
for
x
in
f
:
pdf
.
cell
(
200
,
10
,
txt
=
x
,
ln
=
1
,
align
=
'C'
)
# save the pdf with name .pdf
pdf
.
output
(
PDF_DESTINATION_DIR
)
# convert the summary list to a text
listToStr
=
' '
.
join
([
str
(
elem
)
for
elem
in
summary
])
return
text
,
listToStr
\ No newline at end of file
LectureSummarizingApp/Voice Recorder.py
View file @
3e85b92f
import
sounddevice
as
sd
from
scipy.io.wavfile
import
write
import
wavio
as
wv
import
os
# Sampling frequency
freq
=
44100
def
AudioRecorder
(
audio
):
# Recording duration
duration
=
10
BASE_DIR
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
# Start recorder with the given values of
# duration and sample frequency
recording
=
sd
.
rec
(
int
(
duration
*
freq
),
samplerate
=
freq
,
channels
=
2
)
#for the array
DESTINATION_DIR
=
os
.
path
.
join
(
BASE_DIR
,
"audioArray
\\
{}"
.
format
(
audio
))
# Record audio for the given number of seconds
sd
.
wait
(
)
#for the audio
LECTURE_AUDIO_DIR
=
os
.
path
.
join
(
BASE_DIR
,
"lectures
\\
Lecture_{}"
.
format
(
audio
)
)
# This will convert the NumPy array to an audio
# file with the given sampling frequency
write
(
"recording0.wav"
,
freq
,
recording
)
# Sampling frequency
freq
=
44100
#Convert the NumPy array to audio file
wv
.
write
(
"recording1.wav"
,
recording
,
freq
,
sampwidth
=
2
)
\ No newline at end of file
# Recording duration
duration
=
20
# Start recorder with the given values of
# duration and sample frequency
recording
=
sd
.
rec
(
int
(
duration
*
freq
),
samplerate
=
freq
,
channels
=
2
)
# Record audio for the given number of seconds
sd
.
wait
()
# This will convert the NumPy array to an audio
# file with the given sampling frequency
write
(
DESTINATION_DIR
,
freq
,
recording
)
#Convert the NumPy array to audio file
wv
.
write
(
LECTURE_AUDIO_DIR
,
recording
,
freq
,
sampwidth
=
2
)
\ No newline at end of file
LectureSummarizingApp/api.py
View file @
3e85b92f
from
rest_framework.views
import
APIView
from
rest_framework.response
import
Response
from
FirstApp.logic.id_generator
import
generate_new_id
from
LectureSummarizingApp.models
import
LectureAudio
,
LectureAudioNoiseRemoved
,
LectureSpeechToText
,
\
LectureAudioSummary
,
LectureNotices
from
LectureSummarizingApp.serializer
import
LectureAudioSerializer
,
LectureAudioNoiseRemovedSerializer
,
\
LectureSpeechToTextSerializer
,
LectureAudioSummarySerializer
,
LectureNoticesSerializer
from
.
import
speech_to_text
as
stt
from
.
import
noiseRemove
as
nr
import
datetime
# APIs used in Lecture Summarizing Component
from
.Summary
import
LectureSummary
from
.noise
import
noise_removal
from
.speech_to_text
import
speech_to_text
class
LectureAudioAPI
(
APIView
):
def
get
(
self
,
request
):
...
...
@@ -18,12 +27,40 @@ class LectureAudioAPI(APIView):
return
Response
(
lecture_audio_serializer
.
data
)
class
audioNoiseRemovedList
(
APIView
):
def
get
(
self
,
request
):
lecture_audio_noise_removed
=
LectureAudioNoiseRemoved
.
objects
.
all
()
serializer
=
LectureAudioNoiseRemovedSerializer
(
lecture_audio_noise_removed
,
many
=
True
)
return
Response
(
serializer
.
data
)
# lecture_audio_noise_removed = LectureAudioNoiseRemoved.objects.all()
# serializer = LectureAudioNoiseRemovedSerializer(lecture_audio_noise_removed, many=True)
audio_noise_removed_list
=
LectureAudioNoiseRemoved
.
objects
.
order_by
(
'lecture_audio_noise_removed_id'
)
.
last
()
audio_name
=
request
.
query_params
.
get
(
"audio_name"
)
id
=
int
(
request
.
query_params
.
get
(
"id"
))
current_date
=
datetime
.
datetime
.
now
()
.
date
()
fake_duration
=
datetime
.
timedelta
(
minutes
=
2
,
seconds
=
10
,
milliseconds
=
00
)
# generate new id for audio noise removed
new_audio_noise_removed_id
=
generate_new_id
(
audio_noise_removed_list
.
lecture_audio_noise_removed_id
)
# nr.noise_removalll(video_name)
noise_removal
(
audio_name
)
LectureAudioNoiseRemoved
(
lecture_audio_noise_removed_id
=
new_audio_noise_removed_id
,
lecture_audio_id_id
=
id
,
lecturer_date
=
current_date
,
lecture_audio_name
=
audio_name
,
lecture_audio_length
=
fake_duration
)
.
save
()
return
Response
({
"response"
:
Response
.
status_code
})
def
post
(
self
,
request
):
LectureAudioNoiseRemoved
(
...
...
@@ -39,47 +76,68 @@ class audioNoiseRemovedList(APIView):
class
audioToTextList
(
APIView
):
def
get
(
self
,
request
):
lecture_speech_to_text_id
=
LectureSpeechToText
.
objects
.
all
()
serializer
=
LectureSpeechToTextSerializer
(
lecture_speech_to_text_id
,
many
=
True
)
#lecture_speech_to_text_id = LectureSpeechToText.objects.all()
#serializer = LectureSpeechToTextSerializer(lecture_speech_to_text_id, many=True)
audio_to_text_list
=
LectureSpeechToText
.
objects
.
order_by
(
'lecture_speech_to_text_id'
)
.
last
()
# return Response(serializer.data)
video_name
=
request
.
query_params
.
get
(
"video
_name"
)
speech_to_text_name
=
request
.
query_params
.
get
(
"speech_to_text
_name"
)
print
(
'video name: '
,
video_name
)
print
(
'file name: '
,
speech_to_text_name
)
id
=
int
(
request
.
query_params
.
get
(
"id"
))
# id = request.query_params.get("id")
stt
.
speech_to_text
(
video_name
)
# generate new id for speech to text file
new_speech_to_text_id
=
generate_new_id
(
audio_to_text_list
.
lecture_speech_to_text_id
)
speech_to_text
(
speech_to_text_name
)
LectureSpeechToText
(
lecture_speech_to_text_id
=
new_speech_to_text_id
,
lecture_audio_id_id
=
id
,
audio_original_text
=
speech_to_text_name
)
.
save
()
return
Response
({
"response"
:
"successful"
"response"
:
Response
.
status_code
})
def
post
(
self
,
request
):
# video_name = request.data["video_name"]
#
# print('video name: ', video_name)
#
# stt.speech_to_text(video_name)
LectureSpeechToText
(
lecture_speech_to_text_id
=
request
.
data
[
"lecture_speech_to_text_id"
],
lecture_audio_id
=
request
.
data
[
"lecture_audio_id"
],
audio_original_text
=
request
.
data
[
"audio_original_text"
]
audio_original_text
=
request
.
data
[
"audio_original_text"
]
,
)
.
save
()
return
Response
({
"response"
:
request
.
data
})
class
l
ectureSummaryList
(
APIView
):
class
L
ectureSummaryList
(
APIView
):
def
get
(
self
,
request
):
lecture_audio_summary_id
=
LectureAudioSummary
.
objects
.
all
()
serializer
=
LectureAudioSummarySerializer
(
lecture_audio_summary_id
,
many
=
True
)
return
Response
(
serializer
.
data
)
#
serializer = LectureAudioSummarySerializer(lecture_audio_summary_id, many=True)
#
return Response(serializer.data)
def
post
(
self
,
request
):
lecture_summary_list
=
LectureAudioSummary
.
objects
.
order_by
(
'lecture_audio_summary_id'
)
.
last
()
lecture_summary_name
=
request
.
query_params
.
get
(
"lecture_summary_name"
)
id
=
int
(
request
.
query_params
.
get
(
"id"
))
# generate new id for summary
lecture_summary_id
=
"LSUM0001"
if
lecture_summary_list
is
None
else
generate_new_id
(
lecture_summary_list
.
lecture_audio_summary_id
)
text
,
summary
=
LectureSummary
(
lecture_summary_name
)
LectureAudioSummary
(
lecture_audio_summary_id
=
lecture_summary_id
,
lecture_audio_id_id
=
id
,
audio_original_text
=
text
,
audio_summary
=
summary
)
.
save
()
return
Response
({
"response"
:
request
.
data
})
def
post
(
self
,
request
):
LectureAudioSummary
(
lecture_speech_to_text_id
=
request
.
data
[
"lecture_speech_to_text_id"
],
lecture_audio_id
=
request
.
data
[
"lecture_audio_id"
],
...
...
@@ -90,12 +148,31 @@ class lectureSummaryList(APIView):
class
l
ectureNoticeList
(
APIView
):
class
L
ectureNoticeList
(
APIView
):
def
get
(
self
,
request
):
lecture_notice_id
=
LectureNotices
.
objects
.
all
()
serializer
=
LectureNoticesSerializer
(
lecture_notice_id
,
many
=
True
)
return
Response
(
serializer
.
data
)
# serializer = LectureNoticesSerializer(lecture_notice_id, many=True)
# return Response(serializer.data)
lecture_notice_list
=
LectureNotices
.
objects
.
order_by
(
'lecture_notice_id'
)
.
last
()
lecture_notice_name
=
request
.
query_params
.
get
(
"lecture_notice_name"
)
id
=
int
(
request
.
query_params
.
get
(
"id"
))
# generate new id for notice
notice_id
=
"LN0001"
if
lecture_notice_list
is
None
else
generate_new_id
(
lecture_notice_list
.
lecture_notice_id
)
text
=
LectureNotices
(
lecture_notice_name
)
LectureNotices
(
lecture_notice_id
=
notice_id
,
lecture_audio_id
=
id
,
notice_text
=
text
)
.
save
()
return
Response
({
"response"
:
request
.
data
})
def
post
(
self
,
request
):
LectureNotices
(
...
...
LectureSummarizingApp/noise.py
View file @
3e85b92f
import
librosa
from
pysndfx
import
AudioEffectsChain
import
python_speech_features
import
os
def
noise_removal
(
video_name
):
def
read_file
(
file_name
):
sample_file
=
file_name
sample_directory
=
'lectures/'
sample_path
=
sample_directory
+
sample_file
# sample_file = file_name
# sample_directory = 'lectures/'
# sample_path = sample_directory + sample_file
BASE_DIR
=
os
.
path
.
dirname
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
)))
LECTURE_VIDEO_DIR
=
os
.
path
.
join
(
BASE_DIR
,
"LectureSummarizingApp
\\
lectures
\\
{}"
.
format
(
video_name
))
print
(
'lecture audio directory: '
,
LECTURE_VIDEO_DIR
)
# DESTINATION_DIR = os.path.join(BASE_DIR, "LectureSummarizingApp\\noise_removed_lectures")
DESTINATION_DIR
=
os
.
path
.
dirname
(
os
.
path
.
join
(
BASE_DIR
,
"LectureSummarizingApp
\\
noise_removed_lectures
\\
sample.txt"
))
print
(
'destination directory: '
,
DESTINATION_DIR
)
# generating audio time series and a sampling rate (int)
a
,
sr
=
librosa
.
load
(
sample_path
)
a
,
sr
=
librosa
.
load
(
path
=
LECTURE_VIDEO_DIR
)
print
(
'a: '
,
a
)
print
(
'sr: '
,
sr
)
# speech_boosted = mffc_highshelf(a, sr)
output_file
(
destination
=
DESTINATION_DIR
,
filename
=
video_name
,
a
=
a
,
sr
=
sr
)
return
a
,
sr
...
...
@@ -24,6 +39,7 @@ def mffc_highshelf(a, sr):
mfcc
=
python_speech_features
.
base
.
logfbank
(
a
)
mfcc
=
python_speech_features
.
base
.
lifter
(
mfcc
)
sum_of_squares
=
[]
index
=
-
1
for
r
in
mfcc
:
...
...
@@ -40,73 +56,25 @@ def mffc_highshelf(a, sr):
speech_booster
=
AudioEffectsChain
()
.
highshelf
(
frequency
=
min_hz
*
(
-
1
)
*
1.2
,
gain
=-
12.0
,
slope
=
0.6
)
.
limiter
(
gain
=
8.0
)
a_speach_boosted
=
speech_booster
(
a
)
# a_speach_boosted = speech_booster.
return
(
a_speach_boosted
)
def
mfcc_lowshelf
(
a
,
sr
):
mfcc
=
python_speech_features
.
base
.
mfcc
(
a
)
mfcc
=
python_speech_features
.
base
.
logfbank
(
a
)
mfcc
=
python_speech_features
.
base
.
lifter
(
mfcc
)
# def trim_silence(y):
# a_trimmed, index = librosa.effects.trim(y, top_db=20, frame_length=2, hop_length=500)
# trimmed_length = librosa.get_duration(y) - librosa.get_duration(a_trimmed)
#
# return a_trimmed, trimmed_length
sum_of_squares
=
[]
index
=
-
1
for
x
in
mfcc
:
sum_of_squares
.
append
(
0
)
index
=
index
+
1
for
n
in
x
:
sum_of_squares
[
index
]
=
sum_of_squares
[
index
]
+
n
**
2
strongest_frame
=
sum_of_squares
.
index
(
max
(
sum_of_squares
))
hz
=
python_speech_features
.
base
.
mel2hz
(
mfcc
[
strongest_frame
])
max_hz
=
max
(
hz
)
min_hz
=
min
(
hz
)
speech_booster
=
AudioEffectsChain
()
.
lowshelf
(
frequency
=
min_hz
*
(
-
1
),
gain
=
12.0
,
slope
=
0.5
)
a_speach_boosted
=
speech_booster
(
a
)
return
(
a_speach_boosted
)
def
trim_silence
(
y
):
a_trimmed
,
index
=
librosa
.
effects
.
trim
(
y
,
top_db
=
20
,
frame_length
=
2
,
hop_length
=
500
)
trimmed_length
=
librosa
.
get_duration
(
y
)
-
librosa
.
get_duration
(
a_trimmed
)
return
a_trimmed
,
trimmed_length
def
enhance
(
y
):
apply_audio_effects
=
AudioEffectsChain
()
.
lowshelf
(
gain
=
10.0
,
frequency
=
260
,
slope
=
0.1
)
.
reverb
(
reverberance
=
25
,
hf_damping
=
5
,
room_scale
=
5
,
stereo_depth
=
50
,
pre_delay
=
20
,
wet_gain
=
0
,
wet_only
=
False
)
#.normalize()
a_enhanced
=
apply_audio_effects
(
y
)
return
a_enhanced
# def enhance(y):
# apply_audio_effects = AudioEffectsChain().lowshelf(gain=10.0, frequency=260, slope=0.1).reverb(reverberance=25, hf_damping=5, room_scale=5, stereo_depth=50, pre_delay=20, wet_gain=0, wet_only=False)#.normalize()
# a_enhanced = apply_audio_effects(y)
#
# return a_enhanced
def
output_file
(
destination
,
filename
,
a
,
sr
,
ext
=
""
):
destination
=
destination
+
filename
[:
-
4
]
+
ext
+
'.wav'
librosa
.
output
.
write_wav
(
destination
,
a
,
sr
)
lectures
=
[
'Lecture01.wav'
]
for
s
in
lectures
:
filename
=
s
a
,
sr
=
read_file
(
filename
)
# a_reduced_centroid_s = reduce_noise_centroid_s(a, sr)
a_reduced_mfcc_lowshelf
=
mfcc_lowshelf
(
a
,
sr
)
a_reduced_mfcc_highshelf
=
mffc_highshelf
(
a
,
sr
)
# trimming silences
# a_reduced_centroid_s, time_trimmed = trim_silence(a_reduced_centroid_s)
a_reduced_mfcc_up
,
time_trimmed
=
trim_silence
(
mfcc_lowshelf
)
a_reduced_mfcc_down
,
time_trimmed
=
trim_silence
(
mffc_highshelf
)
# output_file('lectures_trimmed_noise_reduced/' ,filename, y_reduced_centroid_s, sr, '_ctr_s')
output_file
(
'lectures_trimmed_noise_reduced/'
,
filename
,
a_reduced_mfcc_up
,
sr
,
'_mfcc_up'
)
# output_file('lectures_trimmed_noise_reduced/' ,filename, a_reduced_mfcc_down, sr, '_mfcc_down')
# output_file('lectures_trimmed_noise_reduced/' ,filename, a, sr, '_org')
LectureSummarizingApp/noiseRemove.py
View file @
3e85b92f
...
...
@@ -4,54 +4,63 @@ from scipy.io.wavfile import read
from
scipy.io.wavfile
import
write
from
scipy
import
signal
import
matplotlib.pyplot
as
mplt
import
os
#get_ipython().magic('matplotlib inline')
(
Frequency
,
array
)
=
read
(
'lectures/Lecture01.wav'
)
len
(
array
)
def
noise_removalll
(
video_name
):
mplt
.
plot
(
array
)
mplt
.
title
(
'Original Signal Spectrum'
)
mplt
.
xlabel
(
'Frequency(Hz)'
)
mplt
.
ylabel
(
'Amplitude'
)
BASE_DIR
=
os
.
path
.
dirname
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
)))
LECTURE_VIDEO_DIR
=
os
.
path
.
join
(
BASE_DIR
,
"LectureSummarizingApp
\\
lectures
\\
{}"
.
format
(
video_name
))
fourierTransformation
=
sip
.
fft
(
array
)
# (Frequency, array) = read('lectures/Lecture01.wav')
# (Frequency, array) = read('lectures/{}'.format(video_name))
(
Frequency
,
array
)
=
read
(
LECTURE_VIDEO_DIR
)
scale
=
sip
.
linspace
(
0
,
Frequency
,
len
(
array
)
)
len
(
array
)
mplt
.
stem
(
scale
[
0
:
5000
],
nump
.
abs
(
fourierTransformation
[
0
:
5000
]),
'r'
)
mplt
.
title
(
'Signal spectrum after FFT
'
)
mplt
.
xlabel
(
'Frequency(Hz)'
)
mplt
.
ylabel
(
'Amplitude'
)
mplt
.
plot
(
array
)
mplt
.
title
(
'Original Signal Spectrum
'
)
mplt
.
xlabel
(
'Frequency(Hz)'
)
mplt
.
ylabel
(
'Amplitude'
)
fourierTransformation
=
sip
.
fft
(
array
)
guassianNoise
=
nump
.
random
.
rand
(
len
(
fourierTransformation
))
scale
=
sip
.
linspace
(
0
,
Frequency
,
len
(
array
))
mplt
.
stem
(
scale
[
0
:
5000
],
nump
.
abs
(
fourierTransformation
[
0
:
5000
]),
'r'
)
mplt
.
title
(
'Signal spectrum after FFT'
)
mplt
.
xlabel
(
'Frequency(Hz)'
)
mplt
.
ylabel
(
'Amplitude'
)
NewSound
=
guassianNoise
+
array
write
(
"New-Sound-Added-With-Guassian-Noise.wav"
,
Frequency
,
NewSound
)
guassianNoise
=
nump
.
random
.
rand
(
len
(
fourierTransformation
)
)
u
,
v
=
signal
.
butter
(
5
,
1000
/
(
Frequency
/
2
),
btype
=
'highpass'
)
filteredSignal
=
signal
.
lfilter
(
u
,
v
,
NewSound
)
NewSound
=
guassianNoise
+
array
# plotting the signal.
mplt
.
plot
(
filteredSignal
)
mplt
.
title
(
'Highpass Filter'
)
mplt
.
xlabel
(
'Frequency(Hz)'
)
mplt
.
ylabel
(
'Amplitude'
)
write
(
"New-Sound-Added-With-Guassian-Noise.wav"
,
Frequency
,
NewSound
)
# ButterWorth low-filter
x
,
y
=
signal
.
butter
(
5
,
380
/
(
Frequency
/
2
),
btype
=
'lowpass'
)
u
,
v
=
signal
.
butter
(
5
,
1000
/
(
Frequency
/
2
),
btype
=
'highpass'
)
# Applying the filter to the signal
newFilteredSignal
=
signal
.
lfilter
(
x
,
y
,
filteredSignal
)
filteredSignal
=
signal
.
lfilter
(
u
,
v
,
NewSound
)
# plotting the signal.
mplt
.
plot
(
newF
ilteredSignal
)
mplt
.
title
(
'Low
pass Filter'
)
mplt
.
xlabel
(
'Frequency(Hz)'
)
mplt
.
ylabel
(
'Amplitude'
)
# plotting the signal.
mplt
.
plot
(
f
ilteredSignal
)
mplt
.
title
(
'High
pass Filter'
)
mplt
.
xlabel
(
'Frequency(Hz)'
)
mplt
.
ylabel
(
'Amplitude'
)
write
(
"removed.wav"
,
Frequency
,
nump
.
int16
(
newFilteredSignal
/
nump
.
max
(
nump
.
abs
(
newFilteredSignal
))
*
32767
))
\ No newline at end of file
# ButterWorth low-filter
x
,
y
=
signal
.
butter
(
5
,
380
/
(
Frequency
/
2
),
btype
=
'lowpass'
)
# Applying the filter to the signal
newFilteredSignal
=
signal
.
lfilter
(
x
,
y
,
filteredSignal
)
# plotting the signal.
mplt
.
plot
(
newFilteredSignal
)
mplt
.
title
(
'Lowpass Filter'
)
mplt
.
xlabel
(
'Frequency(Hz)'
)
mplt
.
ylabel
(
'Amplitude'
)
write
(
"removed.wav"
,
Frequency
,
nump
.
int16
(
newFilteredSignal
/
nump
.
max
(
nump
.
abs
(
newFilteredSignal
))
*
32767
))
\ No newline at end of file
LectureSummarizingApp/speech_to_text.py
View file @
3e85b92f
...
...
@@ -2,17 +2,23 @@ import speech_recognition as sr
import
os
def
speech_to_text
(
video
_name
):
def
speech_to_text
(
speech_to_text
_name
):
#calling the Recognizer()
r
=
sr
.
Recognizer
()
BASE_DIR
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
VIDEO_PATH
=
os
.
path
.
join
(
BASE_DIR
,
"lectures
\\
{}"
.
format
(
video_name
))
# FILE_PATH = os.path.join(BASE_DIR, "noise_removed_lectures\\noise_removed_lectures_{}".format(speech_to_text_name))
FILE_PATH
=
os
.
path
.
join
(
BASE_DIR
,
"noise_removed_lectures
\\
{}"
.
format
(
speech_to_text_name
))
print
(
'file path: '
,
FILE_PATH
)
# DESTINATION_DIR = os.path.dirname(os.path.join(BASE_DIR, "LectureSummarizingApp\\speechToText\\{}.txt".format(speech_to_text_name)))
DESTINATION_DIR
=
os
.
path
.
join
(
BASE_DIR
,
"speechToText
\\
{}.txt"
.
format
(
speech_to_text_name
))
print
(
'destination directory: '
,
DESTINATION_DIR
)
with
sr
.
AudioFile
(
VIDEO
_PATH
)
as
source
:
with
sr
.
AudioFile
(
FILE
_PATH
)
as
source
:
audio
=
r
.
listen
(
source
)
file
=
open
(
'audioToText01.txt'
,
'w'
)
#open file
# file = open('audioToText01.txt', 'w') #open file
file
=
open
(
DESTINATION_DIR
,
'w'
)
#open file
try
:
text
=
r
.
recognize_google
(
audio
)
#Convert using google recognizer
file
.
write
(
text
)
...
...
LectureSummarizingApp/templates/LectureSummarizingApp/RecordLecture.html
View file @
3e85b92f
{% extends 'FirstApp/template.html' %}
<!DOCTYPE html>
<html
lang=
"en"
>
<head>
<meta
charset=
"UTF-8"
>
<title>
Lecture Recording
</title>
</head>
<body>
% block javascript %}
{% load static %}
<!-- Bootstrap core JavaScript-->
<script
src=
"{% static 'FirstApp/vendor/jquery/jquery.min.js' %}"
></script>
<script
src=
"{% static 'FirstApp/vendor/bootstrap/js/bootstrap.bundle.min.js' %}"
></script>
<!-- Page level plugins -->
<script
src=
"{% static 'FirstApp/vendor/datatables/jquery.dataTables.min.js' %}"
></script>
<script
src=
"{% static 'FirstApp/vendor/datatables/dataTables.bootstrap4.min.js' %}"
></script>
<!-- Page level custom scripts -->
<script
src=
"{% static 'FirstApp/js/demo/datatables-demo.js' %}"
></script>
<!-- Core plugin JavaScript-->
<script
src=
"{% static 'FirstApp/vendor/jquery-easing/jquery.easing.min.js' %}"
></script>
<!-- Load TensorFlow.js -->
<script
src=
"https://unpkg.com/@tensorflow/tfjs"
></script>
<!-- Load Posenet -->
<script
src=
"https://unpkg.com/@tensorflow-models/posenet"
>
</script>
{% endblock %}
<div
id=
"wrapper"
>
<div
id=
"content-wrapper"
class=
"d-flex flex-column"
>
<div
id=
"content"
>
{% block 'container-fluid' %}
<div
class=
"container-fluid"
>
{% load static %}
<div
class=
"d-sm-flex align-items-center justify-content-between mb-4"
>
<h1
class=
"h3 mb-0 text-gray-800"
>
Lecture Record
</h1>
</div>
<div>
<button
TYPE=
"button"
class=
"btn btn-success audio_process"
>
Start Recording
</button>
</div>
</div>
</div>
</div>
</div>
</body>
</html>
\ No newline at end of file
<!--{% extends 'FirstApp/template.html' %}-->
<!--<!DOCTYPE html>-->
<!--<html lang="en">-->
<!--<head>-->
<!-- <meta charset="UTF-8">-->
<!-- <title>Lecture Recording</title>-->
<!--</head>-->
<!--<body>-->
<!--% block javascript %}-->
<!--{% load static %}-->
<!--<!– Bootstrap core JavaScript–>-->
<!--<script src="{% static 'FirstApp/vendor/jquery/jquery.min.js' %}"></script>-->
<!--<script src="{% static 'FirstApp/vendor/bootstrap/js/bootstrap.bundle.min.js' %}"></script>-->
<!--<!– Page level plugins –>-->
<!--<script src="{% static 'FirstApp/vendor/datatables/jquery.dataTables.min.js' %}"></script>-->
<!--<script src="{% static 'FirstApp/vendor/datatables/dataTables.bootstrap4.min.js' %}"></script>-->
<!--<!– Page level custom scripts –>-->
<!--<script src="{% static 'FirstApp/js/demo/datatables-demo.js' %}"></script>-->
<!--<!– Core plugin JavaScript–>-->
<!--<script src="{% static 'FirstApp/vendor/jquery-easing/jquery.easing.min.js' %}"></script>-->
<!--<!– Load TensorFlow.js –>-->
<!--<script src="https://unpkg.com/@tensorflow/tfjs"></script>-->
<!--<!– Load Posenet –>-->
<!--<script src="https://unpkg.com/@tensorflow-models/posenet">-->
<!--</script>-->
<!--{% endblock %}-->
<!--<div id="wrapper">-->
<!-- <div id="content-wrapper" class="d-flex flex-column">-->
<!-- <div id="content">-->
<!-- {% block 'container-fluid' %}-->
<!-- <div class="container-fluid">-->
<!-- {% load static %}-->
<!-- <div class="d-sm-flex align-items-center justify-content-between mb-4">-->
<!-- <h1 class="h3 mb-0 text-gray-800">Lecture Record</h1>-->
<!-- </div>-->
<!-- <div>-->
<!-- <button TYPE="button" class="btn btn-success audio_process">Start Recording</button>-->
<!-- </div>-->
<!-- </div>-->
<!-- </div>-->
<!-- </div>-->
<!--</div>-->
<!--</body>-->
<!--</html>-->
\ No newline at end of file
LectureSummarizingApp/templates/LectureSummarizingApp/summarization.html
View file @
3e85b92f
...
...
@@ -34,43 +34,102 @@
$
(
document
).
ready
(
function
()
{
<!--
speech
to
text
-->
$
(
'
.audio_to_text_process
'
).
click
(
function
()
{
alert
(
'
Processing
'
);
$
(
'
.audio_to_text_process
'
).
click
(
function
(
e
)
{
alert
(
'
Converting
'
);
let
id
=
e
.
target
.
parentNode
.
parentNode
.
getAttribute
(
'
id
'
);
let
speech_to_text_name
=
e
.
target
.
parentNode
.
parentNode
.
getAttribute
(
'
data-noiseless-audio-name
'
);
<!--
speech_to_text_name
=
speech_to_text_name
+
"
.txt
"
;
-->
alert
(
'
id:
'
+
id
);
alert
(
'
speech to text file name:
'
+
speech_to_text_name
);
//call the fetch API
fetch
(
'
http://127.0.0.1:8000/summary/lecture-audio-to-text/?
video_name=Lecture01.wav
'
)
fetch
(
'
http://127.0.0.1:8000/summary/lecture-audio-to-text/?
speech_to_text_name=
'
+
speech_to_text_name
+
'
&id=
'
+
id
)
.
then
((
res
)
=>
res
.
json
())
.
then
((
out
)
=>
aler
t
(
out
.
response
))
.
then
((
out
)
=>
handleSpeechToTex
t
(
out
.
response
))
.
catch
((
err
)
=>
alert
(
'
error:
'
+
err
))
});
//this function will handle the success response for speech-to-text
function
handleSpeechToText
(
response
)
{
if
(
response
===
200
)
{
document
.
location
.
reload
();
}
}
<!--
background
noise
-->
$
(
'
.audio_process
'
).
click
(
function
()
{
$
(
'
.audio_process
'
).
click
(
function
(
e
)
{
alert
(
'
Processing
'
);
let
id
=
e
.
target
.
parentNode
.
parentNode
.
getAttribute
(
'
id
'
);
let
audio_name
=
e
.
target
.
parentNode
.
parentNode
.
getAttribute
(
'
data-audio-name
'
);
audio_name
=
audio_name
+
"
.wav
"
;
alert
(
'
id:
'
+
id
);
alert
(
'
audio name:
'
+
audio_name
);
//call the fetch API
fetch
(
'
http://127.0.0.1:8000/summary/lecture-audio-to-text/?video_name=Lecture01.wav
'
)
fetch
(
'
http://127.0.0.1:8000/summary/lecture-audio-noise-removed/?audio_name=
'
+
audio_name
+
'
&id=
'
+
id
)
.
then
((
res
)
=>
res
.
json
())
.
then
((
out
)
=>
alert
(
out
.
response
))
.
then
((
out
)
=>
handleNoiseRemoved
(
out
.
response
))
.
catch
((
err
)
=>
alert
(
'
error:
'
+
err
))
});
//this function will handle the success respopnse for noise removed
function
handleNoiseRemoved
(
response
)
{
if
(
response
===
200
)
{
document
.
location
.
reload
();
}
}
<!--
To
summary
-->
$
(
'
.to_summary
'
).
click
(
function
()
{
$
(
'
.to_summary
'
).
click
(
function
(
e
)
{
alert
(
'
Processing
'
);
let
id
=
e
.
target
.
parentNode
.
parentNode
.
getAttribute
(
'
id
'
);
<!--
let
lecture_summary_name
=
e
.
target
.
parentNode
.
parentNode
.
getAttribute
(
'
data-summary-name
'
);
-->
let
lecture_summary_name
=
e
.
target
.
parentNode
.
parentNode
.
getAttribute
(
'
data-notice-name
'
);
<!--
lecture_summary_name
=
lecture_summary_name
+
"
.txt
"
;
-->
lecture_summary_name
=
lecture_summary_name
+
"
.wav.txt
"
;
alert
(
'
id:
'
+
id
);
alert
(
'
lecture_summary_name:
'
+
lecture_summary_name
);
//call the fetch API
fetch
(
'
http://127.0.0.1:8000/summary/lecture-audio-to-text/?video_name=Lecture01.wav
'
)
//call the fetch API
fetch
(
'
http://127.0.0.1:8000/summary/lecture-summary/?lecture_summary_name=
'
+
lecture_summary_name
+
'
&id=
'
+
id
)
.
then
((
res
)
=>
res
.
json
())
.
then
((
out
)
=>
alert
(
out
.
response
))
.
then
((
out
)
=>
handleLectureRemoved
(
out
.
response
))
.
catch
((
err
)
=>
alert
(
'
error:
'
+
err
))
});
//this function will handle the success response for summary
function
handleLectureRemoved
(
response
)
{
if
(
response
===
200
)
{
document
.
location
.
reload
();
}
}
<!--
To
Notice
-->
$
(
'
.get_notices
'
).
click
(
function
(
e
)
{
alert
(
'
Processing
'
);
let
id
=
e
.
target
.
parentNode
.
parentNode
.
getAttribute
(
'
id
'
);
let
lecture_notice_name
=
e
.
target
.
parentNode
.
parentNode
.
getAttribute
(
'
data-summary-name
'
);
lecture_notice_name
=
lecture_notice_name
+
"
.wav.txt
"
;
alert
(
'
id:
'
+
id
);
alert
(
'
lecture_notice_name:
'
+
lecture_notice_name
);
//call the fetch API
fetch
(
'
http://127.0.0.1:8000/summary/lecture-notices/?lecture_notice_name=
'
+
lecture_notice_name
+
'
&id=
'
+
id
)
.
then
((
res
)
=>
res
.
json
())
.
then
((
out
)
=>
handleNoticeRemoved
(
out
.
response
))
.
catch
((
err
)
=>
alert
(
'
error:
'
+
err
))
});
//this function will handle the success response for notices
function
handleNoticeRemoved
(
response
)
{
if
(
response
===
200
)
{
document
.
location
.
reload
();
}
}
});
...
...
@@ -108,6 +167,7 @@
<span
class=
"font-italic"
>
No Recordings
</span>
</div>
{% else %}
#lecture list
<div
class=
"table-responsive"
>
<table
class=
"table table-bordered"
id=
"datatable"
>
<thead>
...
...
@@ -121,7 +181,7 @@
<tbody>
{% for lec_audio in lec_audio_data %}
<tr
class=
"recordings not_clicked"
id=
"{{ lec_audio.
lecture_audio_id
}}"
>
<tr
class=
"recordings not_clicked"
id=
"{{ lec_audio.
id }}"
data-audio-name=
"{{ lec_audio.lecture_audio_name
}}"
>
<!-- <td>-->
<!-- <div class="radio">-->
<!-- <label><input type="radio"-->
...
...
@@ -168,6 +228,7 @@
<span
class=
"font-italic"
>
No Recordings
</span>
</div>
{% else %}
#noise removes list
<div
class=
"table-responsive"
>
<table
class=
"table table-bordered"
id=
"datatable"
>
<thead>
...
...
@@ -182,7 +243,7 @@
<tbody>
{% for noiseless_audio in noiseless_data %}
<tr
class=
"recordings not_clicked"
id=
"{{ noiseless_audio.lecture_audio_id }}"
>
<tr
class=
"recordings not_clicked"
id=
"{{ noiseless_audio.lecture_audio_id
.id }}"
data-noiseless-audio-name=
"{{ noiseless_audio.lecture_audio_name
}}"
>
<!-- <td>-->
<!-- <div class="radio">-->
<!-- <label><input type="radio"-->
...
...
@@ -250,7 +311,7 @@
<tbody>
{% for lec_text in lecture_text_data %}
<tr
class=
"recordings not_clicked"
id=
"{{ lec_text.lecture_audio_id
}}"
>
<tr
class=
"recordings not_clicked"
id=
"{{ lec_text.lecture_audio_id
.id }}"
data-summary-name=
"{{lec_text.lecture_audio_id.lecture_audio_name}}"
data-notice-name=
"{{lec_text.lecture_audio_id}}"
>
<!-- <td>-->
<!-- <div class="radio">-->
<!-- <label><input type="radio"-->
...
...
@@ -268,7 +329,7 @@
</button>
</td>
<td>
<button
TYPE=
"button"
class=
"btn btn-
danger
get_notices"
>
Notices
<button
TYPE=
"button"
class=
"btn btn-
success
get_notices"
>
Notices
</button>
</td>
</tr>
...
...
LectureSummarizingApp/urls.py
View file @
3e85b92f
...
...
@@ -8,7 +8,7 @@ router = routers.DefaultRouter()
urlpatterns
=
[
path
(
'lecture'
,
views
.
summarization
),
path
(
'record'
,
views
.
lectureRecord
),
#
path('record', views.lectureRecord),
# API to retrieve lecture summarizing details
...
...
@@ -18,9 +18,9 @@ urlpatterns = [
url
(
r'^lecture-audio-to-text/'
,
api
.
audioToTextList
.
as_view
()),
url
(
r'^lecture-summary/$'
,
api
.
l
ectureSummaryList
.
as_view
()),
url
(
r'^lecture-summary/$'
,
api
.
L
ectureSummaryList
.
as_view
()),
url
(
r'^lecture-notices/$'
,
api
.
l
ectureNoticeList
.
as_view
()),
url
(
r'^lecture-notices/$'
,
api
.
L
ectureNoticeList
.
as_view
()),
path
(
'api-auth/'
,
include
(
'rest_framework.urls'
,
namespace
=
'rest_framework'
))
...
...
LectureSummarizingApp/views.py
View file @
3e85b92f
...
...
@@ -13,7 +13,7 @@ def lectureRecord(request):
print
(
'lecture record data: '
,
lecture_audio_ser
.
data
)
return
render
(
request
,
"LectureSummariz
ation
App/RecordLecture.html"
)
return
render
(
request
,
"LectureSummariz
ing
App/RecordLecture.html"
)
# Views used in Lecture Summarization
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment